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Abstract Soil moisture (SM) is an essential Earth surface and climate system variable. Insights into its
persistence and corresponding time scales can improve numerical modeling and climate system prediction.
In this study, SM from 17 observation stations within the Babao River Basin, Northwest China, between
1 June and 31 August 2014 were used to investigate persistence and corresponding time scales via
adaptive fractal analysis. By conducting an adaptive fractal analysis of net radiation and by estimating the
complementary cumulative distribution function of precipitation intervals, the relation between
meteorological factors and the persistence and time scales of SM are determined and discussed. Results
show that persistence and corresponding time scales of SM could be described using a three-phase concept
diagram. (1) At short time scales (approximately 0–14 hr [4 cm], 0–15 hr [10 cm], or 0–19 hr [20 cm]), the
persistence of SM at most observation stations shows a strong long-range correlation or nonstationarity.
This phenomenon is essentially due to evaporation influenced by net radiation processes and the effects of
rain. (2) At moderate time scales (approximately 14–159 hr [4 cm], 15–161 hr [10 cm], or 19–143 hr [20 cm]),
the persistence of SM mostly exhibits a weak long-range correlation or antipersistence due to net radiation
process uncertainty and the probability of precipitation. (3) At long time scales (approximately greater than
159 hr [4 cm], 161 hr [10 cm], and 143 hr [20 cm]), the persistence of SM dynamics exhibits antipersistence
because a high probability of precipitation reverses changes in the SM persistence.

1. Introduction

Soil moisture is a critical factor that affects numerous Earth surface processes, as well as physical and chem-
ical feedback cycles. Soil moisture significantly affects land-atmosphere interactions by changing water and
energy balance (Koster & Suarez, 2003; Seneviratne et al., 2010). Additionally, soil moisture status is related
to runoff (Brocca et al., 2010; Koster et al., 2010), heat waves (Hirschi et al., 2010), air temperature (Janatian
et al., 2017), and precipitation patterns (Mei & Wang, 2011; Tuttle & Salvucci, 2016). In the field of geophysics,
much of the research on soil moisture has focused on characteristics of soil moisture such as spatiotempo-
ral patterns and variability (Gebremichael et al., 2009; Brocca et al., 2012; Vereecken et al., 2014) and on the
relationship between impact factors (e.g., soil type, land cover, precipitation, insolation, air temperature, and
ground temperature) and soil moisture (Bosch et al., 2006; Cho & Choi, 2014; Famiglietti et al., 1999; Sun &
Wang, 2012). In addition, many studies have discussed spatial scaling effects and spatial scaling invariance
properties observed with typical fractal geometric features such as fractal dimensions (Ji et al., 2016; Millán
et al., 2016; Vidal-Vazquez et al., 2012).

While considerable research has been conducted on spatial scaling effects and spatial scaling invariance prop-
erties, the persistence and corresponding time scale of soil moisture dynamics observed over time have been
insufficiently studied from a fractal perspective. Unlike other definitions (Ghannam et al., 2016), the defini-
tion of soil moisture persistence used in this study refers to its long-range correlation (known as long-range
dependence, long memory, or long-range persistence) and antipersistence. Whether soil moisture exhibits
a long-range correlation or antipersistence, corresponding time window sizes are defined as correspond-
ing time scales. Fractal or multifractal behaviors have often been studied to describe soil moisture dynamics
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Figure 1. A map of the Babao River Basin, Northwest China showing the study area, automatic monitoring stations
(AMSs), and wireless sensor network nodes (WSNNs).

(Gao et al., 2015; Guerrini & Swartzendruber, 1997; Mirás-Avalos et al., 2016). Various studies (e.g., R. Song
et al., 2011; Gao et al., 2015; Ji et al., 2016; Mirás-Avalos et al., 2016) have focused on the features (e.g., frac-
tal dimensions and long-range correlations) of soil moisture dynamics. Various studies demonstrate that soil
moisture dynamics present significant long-range correlations in different areas (Gao et al., 2015; R. Song et al.,
2011). Orth and Seneviratne (2012) analyzed seasonal variation and climatic factors of soil moisture persis-
tence in Europe. However, relationships between external factors (e.g., precipitation and insolation) and the
persistence and corresponding scales of soil moisture dynamics must still be examined.

It is also necessary to enhance the description, investigation, and understanding of soil moisture persistence
and of corresponding time scale to improve the accuracies of soil moisture simulations using linear models or
models considering nonlinearity, as soil moisture is clearly nonlinear and complex over time when coupled
with environmental factors and processes (Mirás-Avalos et al., 2016). First, the soil water diffusivity, which is
illustrated by fractional Brownian motion, follows a nonrandom, nonstationary process and fractal behavior
(Guerrini & Swartzendruber, 1997). Second, the meteorological and hydrological processes are nonlinear and
persistent (Bunde & Havlin, 2002; Bunde et al., 2001; Z. Liu et al., 2017; Schertzer et al., 2010; Zhao et al., 2017).
Finally, integrated and conjunct effect of external factors (i.e., precipitation and insolation) on soil moisture
dynamics are also nonlinear. Generated soil moisture simulation data should exhibit the soil moisture persis-
tence at different time scales under various precipitation/net radiation conditions. From this perspective, the
persistence plays a referential role in improving the accuracy of soil moisture simulations.

Another goal of ours was to examine the relationship between soil moisture dynamic persistence and precipi-
tation, persistence, and net radiation. While the meteorological factors (e.g., evapotranspiration, precipitation,
and insolation) can directly or indirectly change soil moisture (Bosch et al., 2006; Cho & Choi, 2014; Famiglietti
et al., 1999), the relationship between the persistence and corresponding time scales of soil moisture dynam-
ics and meteorological factors remains unclear. At different time scales the main meteorological factors that
influence soil moisture vary. Time scales and the corresponding main factor will testify to the model accu-
racy and provide useful information for the management of irrigation and for monitoring drought. We focus
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Table 1
AMSs and WSNNs Spatial Information

ID Name/code Station type Sensor type Latitude (∘N) Longitude (∘E) Elevation (m)

1 A’rou AMS Hydra Probe II 38.047 100.464 3,033

2 A’rou sunny slope AMS Hydra Probe II 38.090 100.520 3,529

3 A’rou shady slope AMS Hydra Probe II 37.984 100.411 3,536

4 Huangzangsi AMS Hydra Probe II 38.225 100.192 3,294

5 Huangcaogou AMS Hydra Probe II 38.003 100.731 3,137

6 Jingyangling AMS Hydra Probe II 37.838 101.116 3,750

7 E’Bao AMS Hydra Probe II 37.949 100.915 3,294

8 10 WSNN SISOMOP 38.020 100.788 3,484

9 12 WSNN SISOMOP 38.243 100.379 3,766

10 26 WSNN SISOMOP 38.184 100.319 3,045

11 30 WSNN SISOMOP 38.216 100.269 3,091

12 33 WSNN SISOMOP 37.971 100.606 3,335

13 35 WSNN SISOMOP 37.949 100.758 3,335

14 41 WSNN SISOMOP 37.908 100.671 3,635

15 42 WSNN SISOMOP 37.965 100.685 3,413

16 47 WSNN SISOMOP 37.962 100.966 3,515

17 49 WSNN SISOMOP 38.027 100.700 3,661

18 Daman AMS Hydra Probe II 38.856 100.372 1,556

19 Shenshawo AMS Hydra Probe II 38.789 100.493 1,594

20 Sidaoqiao AMS Hydra Probe II 42.001 100.137 873

Note. AMS = automatic monitoring station; WSNN = wireless sensor network node; SISOMOP = simplified soil moisture
probe.

on the relationship between corresponding time scales for persistence and the time intervals of precipitation
and between corresponding time scales for persistence and net radiation time scales. While an adaptive frac-
tal analysis (AFA) of soil moisture for the Babao River Basin (BRB) was carried in this study, the method can be
applied to other basins as well.

The BRB is selected as a study area reflective of arid and semiarid regions. Due to its mountainous terrain,
the BRB serves as an important headwater area for this arid region (Tian et al., 2017). On the one hand,
the soil moisture directly reflects soil water content and significantly affects runoff and soil erosion patterns
(Fitzjohn et al., 1998). On the other hand, the ways in which soil moisture dynamics change over different time
scales are essential to examine in managing the ecosystem, land use, and water resources (Daly & Porporato,
2005). Therefore, understanding soil moisture dynamics in arid regions (e.g., the BRB) is vital to local land use
management, water resource regulation, and ecosystem protection (Kurc & Small, 2007; C. Song et al., 2017).

In the present study, the Hurst exponent was used to denote the persistence of soil moisture dynamics. In
addition, linear scaling ranges are identified and analyzed as they are essential to scaling and fractal analyses
in practice (Gao et al., 2006). The remainder of this paper is organized as follows. Section 2 introduces the
study area, data sources, and methodology used. The results for the AFA of soil moisture and on the relation
between meteorological factors and soil moisture dynamics are given in section 3. A brief discussion of soil
moisture dynamics is presented in section 4. Section 5 presents the conclusions of this study and planned
future work.

2. Method and Data Sources
2.1. Study Area
The study area and locations of the 17 observation stations used in this study are shown in Figure 1. The
BRB covers an area of 2,450 km2 (Ge et al., 2015) in the upper reaches of the Heihe River Basin, the second
largest inland basin in China. This region is a typical arid and high-latitude mountainous region. The annual
precipitation for the region is measured at approximately 405 mm/year with most rainfall occurring during the
summer (from June to August). The mean annual temperature for the region is approximately 0.4 ∘C (Luo et al.,
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Figure 2. Adaptive fractal analysis of soil moisture for 1 June to 31 August 2014 for depths of 4 (blue circles), 10 (red
diamonds), and 20 cm (yellow squares) for the A’rou automatic monitoring station. Black dashed lines show the linear
fitting of log2 F(w) and log2 w of each scaling ranges, which are separated by green vertical lines. H1, H2, and H3
represent Hurst exponents of soil moisture measured at short, moderate, and long time scales, respectively. Interval
estimations represent the standard errors for linear least squares fitting.

2017). The main soil type is Matti-Gelic Cambosols (China Soil Taxonomy). The local land cover type include
alpine meadows, grassland, shrubland, sparse vegetation, and forest. Moreover, three automatic monitoring
stations (AMSs) outside of the BRB region, Daman, Shenshawo, and Sidaoqiao, which are located in the middle
and lower reaches of the Heihe River Basin, are also studied for comparison.

2.2. Data
Soil moisture, precipitation, and net radiation data for 1 June to 31 August 2014 were provided by Environmen-
tal and Ecological Science Data Center for West China, National Natural Science Foundation of China (Li et al.,
2013; S. Liu et al., 2011). Soil moisture in situ data drawn from three depths (4, 10, and 20 cm) were received
from 10 AMSs and from 10 wireless sensor network nodes. Both the precipitation and net radiation data were
obtained from the 10 AMSs. The detailed information of AMSs and wireless sensor nodes are listed in Table 1.
In addition, all of the data used were resampled as hourly average data to unify the sampling frequency.

2.3. Adaptive Fractal Analysis
Since the long-range correlation was first presented by Hurst, numerous methods have been developed (e.g.,
the rescaled range analysis, detrended fluctuation analysis, and AFA; Gao et al., 2007; Hurst, 1951; Peng et al.,
1994). However, AFA presents advantages over rescaled range analysis and detrended fluctuation analysis in
managing arbitrary and strong nonlinear trends (Gao et al., 2011; Hu et al., 2009) due to the finer resolution
of fractal scaling behavior considered within short time series (Gao et al., 2012) and due to its more accurate
Hurst exponent estimations (Gao et al., 2011). Therefore, AFA has been widely used to analyze the persistence
and severity of global terrorism trends (Gao et al., 2017), sociocultural phenomena (Gao et al., 2012), electricity
power load (Jiang & Gao, 2016), traffic flow (Zhu & Gao, 2014), and bioinformatics patterns (Gao et al., 2011;
Gao et al., 2013; Sengupta et al., 2017).

A soil moisture time series can be regarded as involving fractional Brownian motion and is denoted as an
1∕f 2H+1 process, where f denotes the frequency and H is the Hurst exponent (Gao et al., 2006). This type of
process presents long-range correlations when 0.5 < H < 1 , short-range correlations when H = 0.5, and
antipersistent correlations when 0 < H < 0.5 (Gao et al., 2007). Moreover, the Hurst exponent can be larger
than 1, showing that the process is nonstationary rather than stationary (Gao et al., 2006; Gao et al., 2012).

A typical AFA procedure can be described as follows. First, global trends v(i) of a random walk process
u(i), i = 1, 2,… ,N are identified, where N is the length of the original data. Global trends are identified from
synthesized local polynomial fitting trends of n+1 original data points found in overlapped windows of length
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Table 2
Hurst Exponents of Soil Moisture for Depths of 4, 10, and 20 cm for 17 In Situ Observation Stations

4 cm 10 cm 20 cm

Name/code H1 H2 H3 H1 H2 H3 H1 H2 H3

A’rou 1.08 0.53 0.11 1.33 0.66 0.18 1.37 0.72 0.26

A’rou sunny slope 1.12 0.49 0.09 1.06 0.56 0.19 1.23 0.63 0.18

A’rou shady slope 1.14 0.54 0.21 1.09 0.48 0.18 1.01 0.49 0.17

Huangzangsi 0.74 0.42 0.12 0.80 0.42 0.10 0.74 0.29 0.06

Huangcaogou 1.14 0.61 0.15 1.24 0.62 0.12 1.00 0.58 0.13

Jingyangling 0.97 0.76 0.39 0.96 0.76 0.39 1.25 0.81 0.48

E’bao 0.83 0.42 0.07 0.88 0.48 0.12 1.23 0.59 0.19

10 0.73 0.38 0.10 1.01 0.52 0.10 0.93 0.59 0.12

12 0.79 0.48 0.14 0.91 0.59 0.26 0.7 0.7 0.22

26 0.89 0.46 0.15 0.92 0.54 0.23 0.89 0.51 0.25

30 0.95 0.52 0.17 1.04 0.63 0.22 0.85 0.52 0.22

33 1.12 0.61 0.19 1.19 0.56 0.18 0.66 0.52 0.19

35 0.55 0.55 0.19 0.86 0.36 0.36 0.65 0.36 0.16

41 0.95 0.35 0.18 0.99 0.37 0.19 0.79 0.52 0.06

42 0.96 0.54 0.18 1.10 0.55 0.19 0.70 0.70 0.25

47 0.69 0.48 0.15 0.77 0.49 0.12 0.58 0.58 0.17

49 1.08 0.53 0.08 1.06 0.53 0.07 0.79 0.53 0.08

Daman 0.81 0.47 0.15 0.86 0.48 0.20 0.90 0.56 0.42

Shenshawo 0.99 0.49 0.07 1.25 0.58 0.16 1.43 0.59 0.22

Sidaoqiao 1.76 0.04 0.04 1.77 0.05 0.05 1.78 0.15 0.15

w = 2n + 1, where n is a chosen parameter. In addition, the polynomial model for fitting local trend typically
uses a linear or quadratic function. As a result, detrended data y(i) (i.e., the residual of original data to global
trend) are as follows:

y(i) = u(i) − v(i). (1)

Subsequently, the relationship between the variance of the magnitude of residuals F(w) and the length of the
window w is then examined.

F(w) =

[
1
N

N∑
i=1

(u(i) − v(i))2

]1∕2

∼ wH
. (2)

Using the ordinary least squares estimation for double logarithmic coordinates, the Hurst exponent H and
linear scaling ranges can be identified through slopes and ranges of linear fitting, respectively.

3. Results and Analysis
3.1. Persistence of In Situ Soil Moisture
An AFA of hourly soil moisture was conducted for each monitoring site (see supporting information Figures
S1–S17 for detailed results). Taking the A’rou station as an example, Figure 2 shows the resultant AFA of soil
moisture for three depths for the A′rou station. As is shown in Figure 2, log2 F(w) and log2 (w) represent the
binary logarithm of the residuals magnitude variance and the length of the window, respectively. Blue circles,
red diamonds, and yellow squares denote the soil moisture observed at 4, 10, and 20 cm, respectively. Black
dashed lines denote the linear fitting of log2 F(w) and log2 (w) for each of the scaling ranges, which are sep-
arated by green vertical dashed lines. H1, H2, and H3 denote the Hurst exponents of soil moisture for short,
moderate, and long time scale ranges, respectively.

Several features are identified from Figures 2 and S1–S17 and Table 2. First, the multisegment scaling
ranges, which indicate the range of time scales corresponding to Hurst exponents H1, H2, and H3, are
clearly identifiable because log2 F(w) and log2 (w) present linear relationship within each scaling range.
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Table 3
Linear Scaling Range Estimators of Soil Moisture for Depths of 4, 10, and 20 cm

4 cm 10 cm 20 cm

Name/code E1 E2 E1 E2 E1 E2

A’rou 3.75 7.51 3.75 7.51 3.75 7.51

A’rou sunny slope 3.75 7.02 3.75 7.02 3.75 7.02

A’rou shady slope 4.13 7.51 4.13 7.51 4.13 7.51

Huangzangsi 3.75 7.51 3.75 7.51 3.75 7.51

Huangcaogou 3.25 7.51 3.25 7.51 3.26 7.51

Jingyangling 4.13 5.07 4.13 5.07 4.13 5.07

E’bao 3.75 7.51 3.75 7.51 3.75 7.51

10 4.13 7.51 4.13 7.51 4.13 7.51

12 4.13 7.51 4.13 7.51 ∕ 7.51

26 3.25 7.51 4.61 7.51 5.07 7.51

30 4.13 7.51 4.13 7.51 5.07 7.51

33 3.75 7.51 3.75 7.51 5.07 7.51

35 ∕ 7.02 4.61 ∕ 5.07 7.51

41 3.75 7.51 3.75 7.51 3.75 4.51

42 4.13 7.51 4.13 7.51 ∕ 7.51

47 4.13 7.51 4.13 7.51 ∕ 7.51

49 3.75 7.51 3.75 7.51 5.07 7.51

Daman 3.75 7.51 3.75 7.51 5.07 7.51

Shenshawo 3.75 7.51 3.75 7.51 5.07 7.51

Sidaoqiao 3.75 7.51 3.75 7.51 5.07 7.51

Note. A slash indicates that there are none of this type of estimator.

In addition, when only two scaling ranges are considered, H2 is consid-
ered equal to the corresponding H1 or H3 depending on where the break is
positioned to maintain the consistency of descriptions. Second, three Hurst
exponents of the same depth successively decrease for the same observa-
tion station. With the exception of those for the wireless sensor network
node (WSNN) #35 station, AFA curves are shown from top to bottom for
three depths (4, 10, and 20 cm). Third, H1 values are generally larger than
0.5 and are sometimes even larger than 1, indicating the nonstationarity
of soil moisture. In turn, soil moisture will continue to significantly increase
or decrease over short time periods. H2 fluctuates by approximately 0.5
but does not exceed H1. Therefore, soil moisture will have a high proba-
bility of continuing to increase or decrease within a moderate time scale.
H3 is slightly lower than both 0.5 and the corresponding H2. Similarly, H3
of long time scales shows that soil moisture is likely to shift from decreas-
ing to increasing or from increasing to decreasing. Finally, soil moisture was
found to present one or two scaling region breaks, revealing turning points
of the Hurst exponents. These turning points show that soil moisture trends
reverse from a moderate time scale to large time scale.

In addition, estimators of linear scaling ranges for our AFA of soil moisture
time series are shown in Table 3. The two estimators indicate the break
points of time scales for different time scaling ranges. E1 and E2 are obtained
from the corresponding value of log2(w) for each break point. E1 indicates
the maximum time scale of short time scale ranges and the minimum time
scale of the moderate time scaling range. E2 indicates the maximum time
scale of the moderate time scaling range and the minimum time scale of the
long time scale range.

In general, most of the scaling ranges present two estimators E1 and E2,
denoting the time scale of 2E1 and 2E2 hr, respectively. According to the
Hurst exponents and scaling ranges of 17 stations in the BRB , the persis-
tence of soil moisture dynamics can be divided into three phases. (1) Phase

Figure 3. CCDF of intervals between continuous hourly precipitation for the A’rou station in log-log form. log2 i and
log2 P(I > i) represent logarithms to base 2 of the intervals and corresponding CCDF values. Dashed red and cyan lines
denote the best linear fitting found for the scaling ranges. The 𝛼 is the slope of the linear least squares fitting. CCDF =
complementary cumulative distribution function.
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Table 4
Linear Scaling Range Estimators of Precipitation CCDF for Seven AMSs of the
BRB Region

Name Scaling break Tail estimator

A’rou 4.371 7.517

A’rou sunny slope 4.365 8.506

A’rou shady slope 4.430 6.850

Huangzangsi 4.336 7.450

Huangcaogou 5.126 6.698

Jingyangling 4.129 6.355

E’bao 4.266 7.314

Note. CCDF = complementary cumulative distribution function; AMSs =
automatic monitoring stations; BRB = Babao River Basin.

1: For the short time scale (approximately 0–14 hr at 4 cm, 0–15 hr at 10 cm,
and 0–19 hr at 20 cm on average), the persistence of soil moisture dynam-
ics exhibits a strong pattern of nonstationarity or long-range correlation. (2)
Phase 2: For the moderate time scale (approximately 14–159 hr at 4 cm,
15–161 hr at 10 cm, and 19–143 hr at 20 cm on average), the persistence
of soil moisture dynamics shows a weak long-range correlation or antiper-
sistence. (3) Phase 3: For the long time scale (approximately more than
159 hr at 4 cm, more than 161 hr at 10 cm, and more than 143 hr at 20 cm
on average), the persistence of soil moisture dynamics presents a strong
antipersistence trend. The stations present two scaling ranges that conclude
within two of the three phases, though exact time scales differ based on
the two phases involved. For example, soil moisture dynamics observed at
4 cm for Huangcaogou station involved Phases 1, 2, and 3 for time scales
of 9.5, 9.5–182, and longer than 183 hr, respectively. Accurate time scales
for each phase vary from one station to another because the geographic
factors(e.g., slope, aspect, elevation, and vegetation coverage) affecting the
stations are not identical.

The Hurst exponents and scaling ranges can enhance our understanding of the soil system and can help
improve models and agricultural planning. In terms of improving models, the persistence and time scales can
be used to identify the proper time scale for downscaling soil moisture remote sensing data. Regarding the
agricultural planning, the resultant persistence and corresponding time scale presented in this paper can be
used to determine how soil moisture conditions will develop in the future. For example, when soil moisture
levels in an area reflect arid conditions, we can determine whether droughts or high wetting levels are likely
to occur according to the Hurst exponent and its time scale.

3.2. Relationships Between Scaling Range Estimators of Soil Moisture and Precipitation
As precipitation occurs at intervals and directly changes the soil moisture conditions, a scatter plot of soil mois-
ture scaling ranges and scaling breaks of precipitation intervals is used to verify whether there is a relationship
between them.

Figure 4. Relationships between Hurst exponent time scaling range estimators for soil moisture and time scaling
estimators for precipitation intervals. The horizontal axis denotes scaling range estimators of the Hurst exponent. The
vertical axis denotes the scaling break and tail estimator (i.e., scaling range estimators) of the CCDF of precipitation
intervals. Circles, diamonds, and squares denote scaling ranges of the Hurst exponent and the CCDF of precipitation
intervals for depths of 4, 10, and 20 cm for seven automatic monitoring stations in the Babao River Basin. CCDF =
complementary cumulative distribution function.
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Figure 5. Adaptive fractal analysis of net radiation for 1 June to 31 August 2014, for the A’rou automatic monitoring
stations. Dashed lines denote the linear fitting of log2 F(w) and log2 w for each of the scaling ranges, which are
separated at the estimator.

The complementary cumulative distribution function (CCDF) of intervals of continuous hourly precipitation
was calculated using a log-log plot to determine scaling region breaks. As the 10 WSNNs lost considerable
amount of precipitation data and are not equipped with radiation sensors, only precipitation and net radiation
data for 10 AMSs were used. For example, the precipitation CCDF for the A’rou station is shown in Figure 3
where log2 i and log2 P(I > i) represent logarithms to base 2 of the intervals and corresponding CCDF values.
The dashed red and cyan lines denote the best linear fittings found for the scaling ranges. The 𝛼 is the slope
of the linear least squares fitting. Some features are identified from Figures 3 and S21–S30. The CCDF curves
of precipitation intervals reveal a power law generated from two well-distinguished linear fitting sections in
log-log coordinates. The 𝛼 significantly decreases following scaling breaks. To distinctly illustrate the scaling
breaks and the tail estimator of the intervals, CCDF parameters for seven AMSs of the BRB region are listed in
Table 4. The tails of interval logarithms drop from approximately 6.3 to 7.5.

The E1 and E2 of soil moisture scaling ranges correspond to the scaling break and tail estimator of precipitation
intervals, respectively. This is defined naturally because E1 and E2 refer to short and long time scales, respec-
tively. At the same time, the scaling break and tail breaks represent short and long time intervals, respectively.
The resulting scatter diagram is shown in Figure 4 where circles, diamonds, and squares denote scaling breaks
for depths of 4, 10, and 20 cm, respectively. The Hurst scale represents Hurst exponent scaling ranges of soil
moisture. Interval scales represent the scaling breaks and tail estimators of precipitation intervals.

There is a well-fitted linear relationship between the Hurst exponent time scale and precipitation interval
scales. The coefficient of determination R2 is equal to 0.88, which is significant at the 0.01 level. The Hurst
exponent time scale represents ranges of long-range correlation or antipersistence. Additionally, the interval
scale identifies regions of low or high rainfall probability. As is shown in Figure 4, the scatters in region A
demonstrate time scales presenting low precipitation probability and long-range soil moisture correlations (or
nonstationarity). The scatters shown in region B demonstrate time scales with high precipitation probability
and soil moisture antipersistence. Although the scatters are mostly located in regions A and B, relationships
are still relatively reasonable given that scaling range estimators of soil moisture observed at three depths and
scaling range estimators of precipitation intervals show similar trends. Therefore, the influence of precipitation
on soil moisture can be characterized by the scaling ranges of Hurst exponents and by precipitation intervals.
According to these results, soil moisture simulation can be improved by modifying the weight of net radiation
and precipitation effects on soil moisture at different time scales.
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Figure 6. Adaptive fractal analysis of soil moisture for 1 June to 31 August 2014 for the depths of 4 (blue circles), 10 (red diamonds), and 20 cm (yellow squares)
for Daman, Shenshawo, and Sidaoqiao automatic monitoring stations. Dashed black lines denote linear fitting of log2 F(w) and log2 w values for each scaling
ranges, which are separated by green vertical lines.

3.3. Scaling Range Estimators of Net Radiation
In addition to precipitation, solar radiation affects soil moisture dynamics, as it significantly affects evapotran-
spiration from the land surface and especially over short periods of time. The hourly average net radiation
value is used to represent the solar radiation effect on the soil moisture system, as net radiation removes
other influences (e.g., shortwave and atmospheric radiation). An AFA of net radiation for 10 AMSs is performed
(see Figures S31–S40). Figure 5 shows the AFA of net radiation for 1 June to 31 August 2014 for A’rou AMSs.
Dashed lines denote the linear fitting for all of the scaling ranges separated at the estimator. Net radiation
exhibits significant nonstationarity over a short time scale. Therefore, net radiation processes present distinct
nonstationary dynamics over short time scales, echoing the short scales of soil moisture dynamics.

3.4. Comparison of Stations Characterized by Different Vegetation Types
Since the vegetation type of the 17 stations in the BRB is the alpine meadow, in order to evaluate water uptakes
by local vegetation, three more stations located in the middle reach (Shenshawo and Daman) and lower reach
(Sidaoqiao) of the Heihe River Basin are also analyzed. The land cover at the Shenshawo station is characterized
by features of the Gobi Desert. Land cover at Daman station is mainly composed of maize farmland. Chinese
Tamarisk vegetation is the main type of vegetation found in the Sidaoqiao station. Figure 6 shows AFA results

Figure 7. Sponge concept diagram of Hurst exponents for soil moisture dynamics where the yellow, red, and gray
arrows denote evapotranspiration intensity (EV), net radiation intensity (NR), and precipitation probability (Prep),
respectively. The widths of the gray arrows are proportional to the precipitation probability levels. The time scale axis
denotes time scale ranges for three depths (4, 10, and 20 cm). The Hurst axis denotes the soil moisture Hurst range of
the three depths.
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Figure 8. Adaptive fractal analysis of soil moisture for 1 June to 31 August 2014, for depths of 4 (blue circles), 10 (red
diamonds), and 20 cm (yellow squares) for six automatic monitoring stations.

of soil moisture for the three stations. Figures S28–S30 show CCDF results of precipitation intervals for the
three stations. Figures S38–S40 show AFA results of net radiation for the three stations.

Although the three stations are characterized by different land cover and vegetation types (the Shenshawo
station is located on desert land), the persistence of soil moisture observed at three depths from these sta-
tions reveals the presence of significant multiphase patterns. These results are consistent with those of the
above analysis. While vegetation water uptake certainly affects the soil moisture dynamics, it may not impact
persistence and corresponding time scales as much as net radiation and precipitation. Moreover, the net radi-
ation also reflects certain aspects of the water uptakes of vegetation because the vegetation is characterized
by strong water uptakes with strong radiation due to transpiration effects.

4. Discussion

Based on the above analysis, Hurst exponents depict the conversion of soil moisture dynamics. When Hurst
exponents are greater than 0.5 or even 1, soil moisture dynamics present strong long-range correlations and
can even become nonstationary over the short time scales. This indicates that soil moisture is more likely to
decrease in the future when it has already decreased now and vice versa. When Hurst exponents fluctuate
by approximately 0.5 at moderate time scales, soil moisture dynamics show a weak long-range correlation
or antipersistence. When the Hurst exponents range between 0 and 0.5 over a long time scale, soil moisture
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exhibits antipersistence. This indicates that the soil moisture is more likely to increase in the future when it
has already decreased and vice versa.

According to our AFA results of net radiation, soil moisture dynamics exhibit a pattern similar to that observed
for net radiation over short time scales (over approximately 14 hr at 4 cm, 15 hr at 10 cm , and 19 hr at 20 cm
on average). Simultaneously, the probability of precipitation is low according to the CCDF of precipitation
intervals. This proves that soil moisture is mainly influenced by net radiation or precipitation. However, at
moderate time scales (over approximately 14 to 159 hr at 4 cm, 15 to 161 hr at 10 cm, and 19 to 143 hr at 20 cm
on average), net radiation exhibits antipersistence while the precipitation probability is moderate. Hence, the
long-range correlation of soil moisture is weakened or enters antipersistence. Over the long time scale (after
159 hr at 4 cm, after 161 hr at 10 cm, and after 143 hr at 20 cm on average), the probability of precipitation is
very high and soil moisture is supplemented with water supplies. Thus, soil moisture dynamics show signs of
antipersistence, as soil moisture reverts to to a dry condition without disturbances over the long term.

In summary, in an environment such as the BRB, which involves minimal anthropogenic activities, soil mois-
ture dynamics can be illustrated by the three-phase sponge concept diagram shown in Figure 7 due to similar
water retention and release patterns observed in soil and sponges (Richardson & Siccama, 2000). The diagram
illustrates a scenario in which a sponge is constantly losing water but will recover to a normal state with an
additional water supply (e.g., rainfall). At short time scales, either strong net radiation processes or precipita-
tion controls soil moisture dynamics by affecting evapotranspiration and soil water conditions. At moderate
time scales, net radiation and moderate precipitation probabilities have a moderate evapotranspiration effect
and exhibit moderate soil water supply probability, respectively. Therefore, soil moisture dynamics are likely
to change under dry conditions. However, at long time scales, the combination of high water supply prob-
ability and average net radiation intensity increases soil water supply probability levels. Consequently, soil
moisture dynamics are very likely to shift from dry to wet.

Most of our soil moisture AFA results adhere to this concept diagram. For example, Figure 8 shows six sta-
tions at which soil moisture exhibits typical patterns of strong long-range correlation (even nonstationarity)
to strong antipersistence. Some special examples can also be explained by this diagram, although they differ
from typical cases. For instance, soil moisture dynamics observed at 4 cm for WSNN #35 show long-range cor-
relations at short and moderate time scales because their Hurst exponents are slightly greater than 0.5. This
issue is likely attributable to the occurrence of weak evapotranspiration processes, which are influenced by
geographic factors (e.g., slope and aspect) at the WSNN #35 station.

5. Conclusions

The soil moisture dynamics show different levels of persistence at different scaling ranges based on the AFA
results. At a short time scale, soil moisture mostly demonstrates a strong long-range correlation with H > 0.7.
At a moderate time scale, most soil moisture shows a weak long-range correlation or antipersistence with
0.4 < H < 0.7. At a long time scale, soil moisture mostly exhibits strong signs of antipersistence with 0 <

H < 0.4. In addition, scaling estimators of Hurst exponents for soil moisture depict effects of net radiation and
precipitation. Therefore, Hurst exponents and scaling region estimators can illustrate the persistence of soil
moisture dynamics. These parameters can enhance our understanding of soil systems and improve existing
simulation models. For example, in situ monitoring data are essential reference materials for remote sensing
data. Evolution laws and temporal rhythm of soil moisture investigated from in situ monitoring data are critical
for the downscaling of remote sensing data. Persistence and time scales can be used to determine the proper
time scale for downscaling soil moisture remote sensing data. Meanwhile, according to radiation time scale,
we can determine how long soil moisture is likely to decrease to enhance the effectiveness of radiation for
the model. In addition, based on rainfall conditions and the persistence of soil moisture, the climate model
can reconsider how soil moisture develops at different time scales.

However, the results of the AFA also show that shallow soil moisture dynamics change slightly at different
depths, possibly because this study focused on shallow soil layers of soil moisture dynamics, which are rarely
influenced by deeper hydrological processes (e.g., groundwater table). Therefore, soil moisture dynamics
observed in deeper soil layers and other environments should be investigated and analyzed in future works.
Additionally, due to the lack of long-term fine monitoring data, the estimated time scales and Hurst expo-
nents must be further explored for different climatic zones and geographic environment. The relationship
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between the scaling range estimators of Hurst exponents and precipitation intervals should also be further
investigated using more sample stations.
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