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Abstract Understanding the spatial distribution patterns (SDPs) of natural disasters plays

an essential role in reducing and minimizing natural disaster risks. An integrated discussion

on the SDPs of multiple global disasters is still lacking. In addition, due to their high

quantity and complexity, natural disasters constitute high-dimensional data that represent a

challenge for an analysis of SDPs. This paper analyzed the SDPs of global disasters from

1980 to 2016 through biclustering. The results indicate that the SDPs of fatality rates are

more uneven than those of occurrence rates. Based on the occurrence rates, the selected

countries were clustered into four classes. (1) The major disasters along the northern

Pacific and in the Caribbean Sea and Madagascar are storms, followed by floods. (2) Most

of Africa is mainly affected by floods, epidemics, and droughts. (3) The primary disaster

types in the Alpine-Himalayan belt and the western Andes are floods and earthquakes. (4)

Europe, America, Oceania, and South and Southeast Asia are predominantly influenced by

floods. In addition, according to the fatality rates, the selected countries were clustered into

eight classes. (1) Extreme high temperatures mostly result in high fatality rates (HFRs) in

developed countries. (2) Epidemics lead to HFRs in parts of Africa. (3) Droughts produce

HFRs in East Africa. (4) Earthquakes result in HFRs along the eastern Pacific coastline and

the Alpine-Himalayan belt. (5) Tsunamis mainly cause HFRs in Thailand, Indonesia, and

Japan. (6) Storms result in scattered but distinct HFRs along the coastal regions of the

Pacific and Indian Oceans. (7) Floods cause concentrated HFRs in South Asia and

northeastern South America. (8) Finally, volcanoes cause HFRs in Colombia, while

extreme low temperatures cause HFRs in Ukraine and Poland.
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1 Introduction

It is of great significance to identify and understand the spatial distribution patterns (SDPs)

of natural disasters, especially any spatial heterogeneity in those patterns. This is essential

for the enhancement of disaster resilience, reduction of natural disasters, and sustainable

economic development (Dilley 2006; Shi et al. 2010; Council 2012). Particularly, the

spatial pattern of global natural disasters can assist multinational corporations and orga-

nizations in minimizing the loss of life and property (Bathrellos et al. 2017). A contributing

factor to this end is to enhance our knowledge regarding the global SDPs of multiple

natural disasters from an integrated perspective.

Generally, many previous studies focused on the spatial distribution of disasters in local

reference areas (Borden and Cutter 2008; Han et al. 2016; Li et al. 2016; Peng et al. 2017),

although a few recent studies have focused on mapping single disasters by analyzing the

global distribution pattern (Cvetkovic 2013; Sasa and Cvetkovic 2014). However, the

spatial patterns of individual or local regional-scale disasters may confuse decision makers

because of the variance in the available measurements and the limitations of the investi-

gated spatial scales (Borden and Cutter 2008). Moreover, natural disasters have numerous

interconnections and interactions (Tweed and Walker 2011; Yang et al. 2011), and they are

prone to occur across national boundaries (Oh and Oetzel 2011). Hence, simultaneously

considering all types of disasters and all possible countries is a vital approach for syn-

thetically analyzing the global spatial pattern of natural disasters.

In addition, the analysis of multiple global natural disasters poses a challenge regarding

the high dimension of the data caused by treating countries and disasters as variables and

sample sizes, respectively (Ferraty 2010). Typical high-dimensional data have particular

characteristics, such as the existence of a large number of irrelevant attributes, a sparse

data distribution, and a large amount of local information, which are not easily solved

using ordinary methods.

Alternatively, the biclustering method is an adequate approach to address this challenge.

Different from traditional clustering methods, the biclustering method is able to simulta-

neously cluster objects and their attributes to discover subsets of similar properties in the

dataset (Madeira and Oliveira 2004; Padilha and Campello 2017). This method has been

widely used to analyze bioinformatics (Cheng and Church 2000; Pontes et al. 2015),

juvenile crime (Izenman et al. 2011), and natural disasters (Shen et al. 2016).

In this paper, disaster data are derived from the EM-DAT (D. Guha-Sapir) database and

are generalized into 11 types. The biclustering method is used to obtain unique insights

regarding the SDPs of global natural disasters. The spatial distribution characteristics,

including the patterns in the disaster occurrence and fatality rates, are proposed, analyzed,

and then aggregated at the country level, after which they are compared for an evaluation

of the spatial heterogeneity.

The rest of this paper is organized as follows. Section 2 introduces the data resources

and the biclustering method. In Sect. 3.1, the biclustering results are presented and eval-

uated. The SDPs of the occurrence and fatality rates are identified and analyzed in

Sects. 3.2 and 3.3, respectively. Finally, the discussion and conclusions of this paper are

given in Sect. 4.
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2 Data resources and methods

A total of 25,042 natural disaster records from 1980 to 2016 were derived from the OFDA/

CRED International Disaster Database (EM-DAT), which includes significant disaster

events that satisfy at least one of the following criteria: At least ten people are killed; at

least 100 people are affected; a state of emergency is declared by a governmental entity;

and a call for international help is issued. The EM-DAT also provides information on the

countries and fatalities of disaster events. In addition, both population data and land area

data were obtained from the World Bank. The occurrence and fatality rates of each disaster

type were calculated for the corresponding countries.

2.1 Biclustering method

The biclustering method used in this paper following Zhao and Karypis (2003) was exe-

cuted in gCLUTO 1.0. After constructing the country-disaster matrix, the repeated

bisection algorithm was applied to cluster the data matrix. The repeated bisection algo-

rithm is an extension of the basic k-means clustering method. It first splits all of the objects

into two clusters via two-means clustering and then selects one of those clusters for

splitting and other operations. This process repeats k - 1 times until k clusters are pro-

duced. The details for the repeated bisection algorithm are given by Algorithm 1.

Algorithm 1: The Repeated Bisection Algorithm

1: Initialize the list of a cluster consisting of all objects

2: Repeat  

3:    Select a cluster from the list of clusters

4: Bisect the selected cluster using a 2-way clustering algorithm

5:    Add the resultant two clusters to the list of clusters to replace
the selected cluster

6: Until the list of clusters contains k clusters

The similarity in the repeated bisection algorithm can be expressed by the cosine

similarity, the Euclidean distance, or the Jaccard similarity coefficient. In this paper, the

cosine similarity was chosen to determine the similarity between each cluster object and its

centroid, and it is calculated as follows:

simðX;YÞ ¼ cosðX;YÞ ¼
Pn

i¼1 xiyi

Xk k2 Yk k2
; ð1Þ

where the vectors X and Y represent two clustering objects in the attribute space. Suppose

each clustering object has n properties; each property is represented by an n-dimensional

vector ½ðx1; x2; . . .; xnÞ�. xi indicates the ith attribute of the clustered object, and Xk k2 is the
2-norm of the vector X.

Meanwhile, the clustering results were evaluated using the average internal similarity

(ISim), the average external similarity (ESim), the average standard deviation of the

internal similarity (ISdev), and the average standard deviation of the external similarity

(ESdev). Generally, better clustering results have higher average internal similarities and

lower average internal standard deviations of those similarities; in addition, their average
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external similarities are lower, and the average external standard deviations of those

similarities are higher.

2.2 Definitions

This paper integrated 11 types of natural disasters from the EM-DAT database: droughts

(DR), floods (FL, including coastal floods, riverine floods, and flash floods), earthquakes

(EQ), storms (ST, including cyclones, tropical cyclones, and tornadoes), epidemics (EP),

landslides (LS, including debris flows), wildfires (WF), extreme high temperatures (EH),

extreme low temperatures (EC), volcanoes (VO), and tsunamis (TS).

Considering differences in the land areas and populations of different countries, two

metrics, namely the OPA (occurrences per unit area) and FPP (fatalities per unit people),

were defined to estimate the occurrence and fatality rates of disasters among different

countries. The formal definitions of the OPA and FPP are as follows:

OPAi;j ¼
P

Occuri;j;k
� �

Areaj
; ð2Þ

FPPi;j ¼
P

Fatalityi;j;k

� �

Popj
; ð3Þ

where OPAi, j indicate the number of occurrences per 10,000 km2 of the ith type of disaster

in the country j over a period of time, Occuri, j, k represents the number of occurrences of

the ith type of disaster in the country j during the year k, and Areaj is the land area of the

country j. Similarly, FPPi, j indicate the number of fatalities per 10,000 people of the ith

type of disaster in the country j over a period of time, Fatalityi, j, k represents the number of

fatalities of the ith type of disaster in the country j during the year k, and Popj is the average

population of the country j during the investigated period.

In this study, the rows and columns in the data matrix represent the different countries

and natural disaster types, respectively. The numerical values in the data matrix indicate

the OPA and FPP values from 1980 to 2016. The country-disaster-occurrence matrix and

the country-disaster-fatality matrix were constituted according to the OPA and FPP values.

In addition, in order to meet statistical requirements of the analytical results, countries

with less than 30 disaster events were not selected for clustering in Sect. 3.2, while

countries with less than 1000 deaths due to disasters in the past 27 years were not included

in the clustering samples in Sect. 3.3. Therefore, there are 96 countries and 11 types of

disasters in the country-disaster-occurrence matrix. There are 84 countries and 11 types of

disasters in the country-disaster-fatality matrix.

3 Analysis of the spatial pattern of global natural disasters

3.1 Biclustering results of global natural disasters

Through the global occurrence rates and fatality rates of natural disasters from 1980 to

2016, the biclustering results for all of the countries were generated using gCLUTO 1.0

(Fig. 1). The peaks are labeled with the serial numbers of the clusters. The heights and

volumes of the peaks represent the average internal similarity and the number of members
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within the cluster, respectively, and colors of the mountain peaks represent the average

standard deviation of internal similarity in the cluster. A redder peak indicates a lower

average standard deviation of the internal similarity in the corresponding cluster.

According to the OPA, four country clusters were identified (Fig. 1a). As shown in

Fig. 1a, the OPA biclustering results show good separability because of the four high and

scattered mountain OPA peaks. In addition, their peaks are reddish, indicating that the four

clusters meet the characteristic features (i.e., high ISim, low ISdev, low ESim, and high

ESdev) of good biclustering results.

Figure 1b shows that eight country clusters were identified based on the FPP. Although

the mountain cluster peaks in Fig. 1b are not as scattered as those in Fig. 1a, they are still

clearly distinguishable. Except for class 7, the other cluster peaks are high. Hence, the FPP

biclustering results are relatively acceptable.

The detailed biclustering performance of fatalities data of the country-disaster-occur-

rence matrix is shown in Table 1. The cluster represents the number of classes. The size

shows the number of countries in each class. For OPA clusters, all four clusters have higher

ISim than ESim. At the same time, their ISdevs are lower than ESdevs. Due to this

performance, the four OPA clusters are very fine.

The detailed biclustering performance of fatalities data of the country-disaster-fatality

matrix is shown in Table 2. For FPP clusters, clusters 0–6 have significantly high ISim and

low ISdev. Meanwhile, their ESims are much lower than ISims and their ESdevs are higher

than ISdevs. Although the ISim of cluster 7 is not as much high as the other seven clusters,

it is still much higher than its ISdev and ESim. Hence, the eight FPP clusters result is

reasonable.

Fig. 1 Mountain visualization of four OPA clusters (a) and eight FPP clusters (b)

Table 1 Biclustering perfor-
mance of the country-disaster-
occurrence matrix

Cluster Size ISim ISdev ESim ESdev

0 13 0.886 0.046 0.544 0.170

1 30 0.923 0.030 0.636 0.105

2 17 0.871 0.032 0.684 0.078

3 36 0.884 0.043 0.712 0.055
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3.2 The spatial distribution pattern of global natural disaster occurrence
rates

A spatial distribution map of the OPA was generated through ArcGIS 9.3 and MATLAB; it

is displayed in Fig. 2, which shows a clear spatial heterogeneity at the global scale and a

uniform spatial distribution at the regional scale. The selected countries were clustered into

four classes; those classes are filled with the same colors in the map. The boxplots detail

the statistical distribution characteristics of the OPA for each type of disaster among the

corresponding classes. For instance, among the countries in class 0, the OPA of ST have

the highest average and variance. Beneath the boxplots, bars of red blocks indicate the

average cosine similarities among the OPA of the corresponding natural disasters and

Fig. 2 Spatial pattern of global disaster clusters based on the OPA

Table 2 Biclustering perfor-
mance of the country-disaster-
fatality matrix

Cluster Size ISim ISdev ESim ESdev

0 4 0.987 0.009 0.066 0.059

1 5 0.955 0.017 0.074 0.045

2 13 0.920 0.065 0.050 0.058

3 26 0.942 0.049 0.135 0.048

4 12 0.924 0.030 0.149 0.072

5 9 0.912 0.047 0.139 0.087

6 12 0.866 0.044 0.250 0.072

7 3 0.533 0.187 0.072 0.051
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classes. A redder block indicates a higher average OPA. For example, the OPA of the class

0 countries have a higher OPA for ST and FL than for the other disaster types.

As shown in Fig. 2, the class 0 region distributes along the North Pacific Coast as well

as in Madagascar and the Caribbean Sea. Storms are the major type of disaster, followed by

floods. A total number of 13 countries were identified. The maximum OPA of ST exceed

18 occurrences per 104 km2. This spatial pattern coincides with the cyclone tracks (Knapp

et al. 2010).

Meanwhile, most countries of the class 1 region concentrate in Africa and are mainly

affected by floods and epidemics, followed by droughts. There are 30 countries in the class

1 region in total. The OPA of FL and EP have the similar average. This result indicates that

floods are one of the most common disasters in Africa and implies that epidemics are

correlated with floods in these areas (Li et al. 2016).

Figure 2 shows that the class 2 region locates within the Alpine-Himalayan orogenic

belt and the western Andes where the major disaster type is floods, followed by earth-

quakes. A total of 17 countries were identified in the class 2 region. These two regions are

also located within the Mediterranean-Himalayan seismic belt and the Circum-Pacific

seismic belt. Moreover, Indonesia is located at the intersection of these two seismic belts.

As a result, following FL, EQ are the second-most major disaster in this region. The OPA

of EQ range from 0 to 2, but the maximum OPA of FL are slightly larger than 2.

In addition, the class 3 region, distributing in Europe, the eastern Andes, Oceania, South

and Southeast Asia, the USA, and Canada, is primarily affected by FL. A total of 36

countries were identified in the class 3 region. In the matrix, it is clear that FL are the most

prominent type of natural disaster. The OPA of FL vary from 0 to 5. These areas cover

tropical, temperate, and semiarid climates, indicating that global factors are involved in

floods.

3.3 The spatial distribution pattern of global natural disaster fatality rates

Figure 3 displays the spatial distribution map of global natural disaster fatality rates

according to the FPP using ArcGIS 9.3. All of the selected countries were clustered into

eight classes, and the same classes are filled with identical colors in the map. Similarly, the

bars of red blocks beneath the map represent the average FPP among the corresponding

natural disasters and classes. Redder blocks indicate a higher average FPP. Meanwhile, the

boxplots in Fig. 4 provide detailed the statistical distribution characteristics of the FPP for

each type of disaster in the corresponding class. For example, the FPP of the class 0

countries have the highest, average, and variance for DR.

Comparing Fig. 2 with Fig. 3, it is noteworthy that several colored countries in Fig. 2,

such as Canada, Argentina, and Bolivia, are not shown on the map of global natural

disaster fatality rates. This is because the fatalities in each of these countries over the last

27 years are less than 1000. This indicates that these countries have a strong resilience to

natural disasters.

Figure 3 clearly shows that extreme high temperatures often result in high fatality

rates in developed countries distributed throughout medium- and high-latitude zones.

The 13 countries in the class 2 region include the USA, Russia, and Australia in addition

to others located throughout Western Europe; these countries have the largest average

FPP of EH. This shows that extreme high temperatures are the main lethal disasters in

these countries.

As shown in Fig. 3, high fatality rates in the class 3 region are predominantly caused by

epidemics. A total of 26 countries, including Peru, Malaysia, and Laos in addition to
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numerous African countries, were identified in this region. These countries have the largest

average FPP of EP. This indicates that EP constitute the main lethal disaster in the class 3

region.

It is apparent from Fig. 3 that droughts are responsible for the high fatality rates in parts

of East Africa. There are only four African countries in the class 0 region, namely Sudan,

Ethiopia, Somalia, and Mozambique. The corresponding block bar and boxplot show that

these countries have the largest average FPP of DR. Consequently, the most common

major disaster that causes high fatality rates in these countries is DR.

According to Fig. 3, earthquakes result in high fatality rates in countries located along

the eastern Pacific coast and the Alpine-Himalayan belt. In particular, there are 12

countries in the class 4 region distributed throughout the Mediterranean-Himalayan seismic

belt and the Circum-Pacific seismic belt. Since EQ have the largest average FPP, the

predominant type of disaster in this region is EQ.

Observing the spatial distribution map of global disasters, it is evident that tsunamis

often cause the highest fatality rates in the western Pacific and along the Indian Ocean

coastlines. The five countries in the class 1 region are Japan, Indonesia, Thailand, Sri

Lanka, and Papua New Guinea. TS show the largest average FPP in this region. Therefore,

TS constitute the major disaster type that causes high fatality rates in these countries. Many

documentaries have confirmed that three catastrophic tsunamis have caused enormous

casualties in these countries (Stone and Kerr 2005; Tappin et al. 2008; Aoyama et al. 2014;

McCall 2017). Papua New Guinea was struck by a tsunami in 1998, while Indonesia,

Thailand, and Sri Lanka were heavily damaged by the 2004 Indian Ocean tsunami. In

addition, Japan was badly hit by the 2011 Tohoku tsunami.

Figure 3 also shows that storms cause high fatality rates in Madagascar, Bangladesh,

Myanmar, South Korea, Vietnam, the Philippines, and in the central American states. A

total of nine countries were identified within the class 5 region. Because ST have the

Fig. 3 Spatial pattern of global disaster clusters based on the FPP
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largest average FPP in these countries, it is the most destructive natural disaster in this

region. This is because these countries are distributed along the coastal areas of the North

Pacific, the western Atlantic, and the northern and western Indian Ocean, which are all

high-risk typhoon areas and have weak resilience to typhoons.

Although floods often lead to high fatality rates in India, Cambodia, North Korea,

Brazil, Venezuela, Bolivia, and South Africa, etc., in contrast to the corresponding

occurrence rate pattern, the spatial extent of FL as the main fatal disaster is dramatically

reduced. There are 12 countries in the class 6 region. Due to the largest average FPP of

FL within this region, FL represent the primary disaster that causes the fatality rates

therein. This phenomenon suggests that most countries are effectively capable of

addressing floods.

Moreover, there are three countries, Colombia, Ukraine, and Poland in the class 7

region. However, there are two main types of natural disasters in this region. First, VO

have the second-highest average and the maximum FPP in Colombia. Second, EC have the

highest similarity and the largest average FPP in Poland and Ukraine. In addition,

Columbia has been struck by multiple volcanic disasters. VO and EC are aggregated

together because they are uncommon fatal disasters.

Figure 4 displays the data ranges, averages, and variances of the FPP among the natural

disasters for the eight classes shown in Fig. 3 using MATLAB. DR in East Africa have the

highest average FPP among all of the disaster types. This implies that droughts, especially

agriculture droughts, easily generate famine and consequently lead to many deaths (Masih

et al. 2014). The maximum FPP of ST in the class 1 region approach 20. The maximum

FPP of TS in the class 5 region reach 30. EP are also a serious issue in class 3 with a

maximum of more than 10. The maximum FPP of EH in the class 2 region approach 4 with

an average greater than 1. Because EH occur in developed countries with fatality rates

comparable to FL in the class 6 region, EH should be appropriately valued. Finally, VO are

found in Columbia, and the maximum FPP of VO approach 6. The average FPP of EC in

both Poland and Ukraine exceed 0.

4 Discussion and conclusions

In this paper, the global SDPs of multiple natural disasters were analyzed. The findings

demonstrate that the global occurrence rates display a relatively even SDP on a large scale.

The selected countries were clustered into four regions. Floods are the most widely dis-

tributed disaster, followed by storms, earthquakes, landslides, droughts, and epidemics.

The occurrence rates of the natural disasters are closely related to their geographical

distributions and the environments where the corresponding main natural hazards are

located. For example, the countries in the North Pacific, including Japan, Mexico, and the

Philippines, have a higher frequency of storms. The occurrence rates of earthquake dis-

asters in Italy, Turkey, China, and Chile, which are situated within active seismic belts, are

more pronounced than in other countries.

The spatial heterogeneity of the fatality rates of natural disasters is more significant than

that of the occurrence rates. An investigation into the fatality rates of the different types of

disasters found that the selected countries could be clustered into eight regions. Countries

with HFRs caused by extreme high temperatures are developed countries distributed

throughout medium- and high-latitude zones. Countries with HFRs due to epidemics are

distributed throughout most of Africa, while those with HFRs resulting from droughts are
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located in East Africa. Countries with earthquakes as the primary cause of their HFRs are

situated along the Pacific Rim and the Alpine-Himalayan belt. Countries with HFRs

attributable to tsunamis are concentrated along the Pacific and Indian Ocean coasts.

Countries with floods as the main cause of their HFRs are India, Cambodia, North Korea,

Brazil, Venezuela, and Bolivia in addition to the South African states. Colombia is the sole

country with volcanoes as the cause of HFRs. Meanwhile, the HFRs in Ukraine and Poland

are due to extreme low temperatures.

There are similarities between the SDPs of the occurrence rates and fatality rates. First,

epidemics have significant occurrence rates and significant fatality rates in most African

countries. In addition, earthquakes exhibit high occurrence rates and high fatality rates in

the regions within the Mediterranean-Himalayan seismic belt and the Circum-Pacific

seismic belt. According to the disaster system theory (Shi 1996, 2002), the losses caused by

a disaster are synthetically determined by the type of the hazard, the distribution of

exposure, the economic development capacity, and the resilience, among other factors.

Fig. 4 Boxplots of the FPP for global natural disaster fatality rates. The boxplots detail the statistical
distribution characteristics of the FPP for the disaster types among the corresponding classes
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Therefore, the low socioeconomic level, poor health conditions, and high occurrence rates

of epidemics among African countries have led to a high fatality rate of epidemics in those

countries. Because of their destructive power and relatively high occurrence rates, losses

due to earthquakes in countries with low resiliencies are often high and are related to the

distribution of seismic belts and exposure.

The differences between the spatial distributions of global disaster occurrence rates and

fatality rates can provide insights for disaster risk management. Japan experiences more

typhoons and earthquake disasters, but the most fatalities were caused by the Tohoku

tsunami (Aoyama et al. 2014). Although the frequencies of floods, earthquakes, and

landslides in Indonesia are high, the highest death count was the result of the Indian Ocean

tsunami. Based on the above theory, these differences can be explained as follows: The

occurrence rates of some catastrophes may be low, but the resiliencies of countries to

floods, storms, and earthquakes are stronger than those with respect to the occasional

catastrophic tsunami. Resiliencies to more frequent disasters are more developed and

sufficient; however, for sudden-onset catastrophes, the resilience of a particular country is

likely insufficient, and thus, the fatality rate is higher. Hence, research on rare catastrophes

should receive more attention.

Additionally, this study showed that the biclustering method is able to solve problems

with regard to high-dimensional data involving types of disasters and numbers of countries.

Even though spatial correlations were not used, the clustering results showed a significant

SDP of natural disasters from an integrated perspective. In future research, the complex

and nonlinear effects of natural disasters on climate change will require more research to

understand the interactions and occurrences of multiple natural disasters, especially at the

global scale.
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