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Abstract Studying the tendency of soil temperature and moisture can provide scientific support for
setting soil parameters for land surface hydrological model. Previous research has shown that there is
long-range correlation of soil temperature or moisture; however, driving factors of long-range correlation
variations and the cross correlation between temperature andmoisture undermultiple timescales have rarely
been discussed. To explore the driving factors, we compared long-range correlation between shady and
sunny slopes. Adaptive fractal analysis was utilized to analyze long-range cross correlation (LRCC) and
long-range correlation (LRC). Experimental data were collected between 9 August 2013 and 3 December
2014 at A’rou observation stations, Babao River Basin. Results show that two slopes have some common
characteristics. (1) Soil temperature and moisture display the consistent change. (2) The persistence intensity
of moisture, temperature, and their interaction intensity change at 9, 6, and 6-day timescales, respectively.
(3) LRC and LRCC indices demonstrate the stratification heterogeneity. Results also show that LRC and
LRCC indices on two slopes have differences. The soil system was stratified into three layers to explain these
differences over large timescales. (1) At 4- to 20-cm depth, with significant influence of solar radiation and
evapotranspiration on sunny slope, moisture shows weaker persistence. There is stronger antipersistence of
temperature and stronger hydrothermal interaction on sunny slope. (2) At 20- to 80-cm depth, there is
weaker persistence of soil moisture on shady slope because of unstable groundwater and side runoff supply.
(3) At 80- to 160-cm depth, with seasonal melt-water effect on sunny slope, persistence of moisture was
considerably weaker.

1. Introduction

The exchange and balance of water, heat, and gas are frequent between the soil system and the atmosphere
near the Earth’s surface (Katul et al., 2012). Soil temperature and soil moisture are two important variables in
the soil-atmosphere circle (Wu et al., 2010). Soil moisture can affect the energy exchange process between
land and air through latent heat and sensible heat conduction, and then influence the local climate
(Chahine, 1992). Additional, soil moisture and soil temperature are closely related to some meteorological
factors, including solar radiation (SR; Xiaoning Song et al., 2013), evaporation (Sorman & Abdulrazzak,
2010), and precipitation (Koster et al., 2004). Research on soil moisture and soil temperature mostly concen-
trate on their spatial distribution patterns (Kim & Singh, 2014; Yang et al., 2015), evolution trend with time
(Albergel et al., 2013; Sheffield & Wood, 2010), and their relationship with other environmental and factors
(Che et al., 2018; Ding et al., 2017; Green et al., 2010).

However, the stratification heterogeneity of soil temperature and soil moisture evolution trend is rarely dis-
cussed. And the driving factors of this stratification heterogeneity are insufficiently discussed. The LRC ana-
lysis was mostly used to depict the evolution trend of soil moisture time series (Biswas et al., 2012; Shen
et al., 2018; Wang et al., 2010). Gao et al. (2015) claimed that the persistence of soil moisture increased with
depth in the agro-ecosystem of Luancheng, whereas Song et al. (2011) noted that the persistence of soil
moisture was not consistent with depth change. Obviously, the persistence of soil moisture displays soil
depth variation, while driving factors are insufficiently discussed. Tang et al. (2012) suggested that soil tem-
perature had a significant positive correlation with depth in the middle of the Qilian Mountains. The
research of Che et al. (2018) showed that the response of soil temperature to meteorological elements
was different at different soil depths. It is apparent that soil temperature series characteristics displays soil
depth variation, but the driving factors are still unclear. To discuss the driving factors of this stratification
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heterogeneity, the persistence of soil moisture and soil temperature in different SR conditions were
compared in this paper.

Another goal of this research is to reveal the cross correlation between temperature andmoisture under mul-
tiple timescales and multiple depths. Soil temperature and soil moisture are not independent (Han et al.,
2016). Analysis of intrinsic correlation between soil temperature and soil moisture can help to understand
hydrothermal interactions (Seneviratne et al., 2010). The research of Che et al. (2018) showed that the soil
temperature was significantly relative to soil moisture in the Shanxi section of the Qilian. Stearns and
Carlson (1960) and Lakshmi et al. (2010) also analyzed the linear relationship between soil temperature
and soil moisture. However, the traditional linear correlation analysis ignores the timescale dependence of
correlation. In our research, the LRCC analysis was applied to explore the evolutionary trend between two
sequences under multiple timescales at different depths. And we also compared the results of LRCC analysis
under different SR conditions. Through studying hydrothermal interaction process, the evolutionary trend
characteristics of soil moisture and temperature series under partial depth and timescales can be illustrated.

As a part of climate-hydrological system, soil temperature and soil moisture have many complex properties
such as hierarchy, self-similarity, and dynamics (Joelson et al., 2016; Mandelbrot & Wallis, 1995). In addition,
time series of them exhibit incomplete random fluctuation with periodic change and present nonlinear prop-
erties (Goodchild & Mark, 2015; SONG Changqing et al., 2018; CHENG Changxiu et al., 2018). The LRC analysis
can be used to quantitatively describe the statistical serial correlation (persistence) of this type of nonlinear
sequence (Mandelbrot, 1991). The LRCC analysis can quantitatively explore the interaction between two
sequences of specific timescale (Podobnik et al., 2011).

It is very important to quantitatively characterize the evolution trend of soil moisture and soil temperature
and evaluate the predictability of them. It can provide the basis for setting the soil parameters in terrestrial
climate, ecological, and hydrological models (Porporato et al., 2002; Williams, 2013). In this paper, we calcu-
lated the LRC indices (H) of soil moisture and LRC indices (H) of temperature at different depths. Furthermore,
H can reflect the intensity of persistence or antipersistence of soil moisture time series at a certain timescale.
For persistent series, the noise level is low and the trend is obvious; for antipersistent series, the noise level is
high and the trend is weak. LRCC indices (Hcor) between soil moisture and soil temperature were also calcu-
lated at different depths. Furthermore, Hcor can reflect the intensity of consistent or anticonsistent change
between the two series at a certain timescale. That is, Hcor depicts the intensity of hydrothermal interaction
at certain depth and timescale. These indices reflect the evolution trend of soil temperature and soil moisture.

In addition, in the framework of the climate change, the drought trend will include arid areas becoming more
arid and wetter areas becoming wetter (Dai, 2013; Trenberth et al., 2014). Through characterizing the
evolution trend of soil temperature and soil moisture under multiple timescales, LRC and LRCC results of soil
moisture and soil temperature can contribute to understand the current drought process and predict the
drought trend in the future (Sheffield & wood, 2010; Song et al., 2017).

In the following section (section 2), we will describe the study area and introduce the experimental data.
Research methods will be introduced in section 3. Results of the research are presented and analyzed in
section 4. Section 5 comprises discussions and major conclusions.

2. Study Area and Data
2.1. Study Area

The research area is on shady slope and sunny slope at the A’rou observation station, which is located
upstream of a hydro-meteorological observation network in the Heihe River Basin. The observation field is
stationed in the highlands of the river valley on the south side of the Babao River. The Babao River is tributary
in the upper reaches of the Heihe River, which belongs to Qilian County of Qinghai Province in the town
of A’rou.

There are more precipitation and glacier melt water supply in the upper reaches of Qilian mountainous area,
which is the runoff formation area of Heihe. Qilian mountainous area is the mainly runoff formation area of
the Heihe River. The total basin area of the Babao River is 2,452 km2. The average annual temperature is
0.7 °C, average annual precipitation is approximately 400 mm, and average amount of evaporation is
1,529.8 mm (Li et al., 2014). During the winter, the climate in the basin is cold and dry and snowfall occurs
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less, and there is sufficient sunshine and strong SR. During the summer, the climate in the basin is cool and
humid. Runoff is mainly supplied by precipitation and is supplemented by meltwater and streams. Water
resources in this basin are mainly restricted by precipitation and temperature.

The details of the two stations are the following. The sunny slope station is located at 100.5204°E, 38.0898°N,
north of A’rou, and 3,529 m above sea level. The slope angle of sunny slope is 6.13°. The slope direction is
258.69 (clockwise direction relative to the north). The shady slope station is located at 100.4108°E,
37.9841°N, south of A’rou, and 3,536 m above sea level. The slope angle of shady slope is 13.14°. The slope
direction is 28.30 (clockwise direction relative to the north). The slope angle mainly affects the infiltration rate
of rainfall. The total precipitation during the whole research period in both the two stations was less than
5 mm. And there is little difference in the precipitation distribution between the two stations in the whole
research period. Therefore, in this research, the difference of slope between the two stations will not be
the significant driver to different persistence of soil temperature and moisture. The underlying surface of
these two observation sites is alpine meadow, and the soil type of these two observation sites is
Matti-Gelic Cambosols (China Soil Taxonomy, CST). Therefore, soil type and vegetation type will not be the
major driver to different persistence of soil temperature and moisture. It is apparent that sunny slope station
is closer to the runoff (Figure 1). Less runoff is distributed around the shady slope station. Therefore, water
supply for sunny slope is more stable than that for shady slope. In addition to the SR condition and runoff
distribution, there is no significant difference between the two slopes in terms of geographical location,
altitude, climate, surface coverage, and other natural conditions.

2.2. Data

The research data set contains soil moisture and temperature observation data from 9 August 2013 to 3
December 2014. The data set was obtained from the Heihe eco-hydrological remote sensing test
(HiWATER). The soil moisture in this paper is the soil volumetric water content (%), and the measurement
of temperature is in Celsius (°C). The probes for soil temperature and moisture are buried underground at
depths of 4, 10, 20, 40, 80, 120, and 160 cm, which is located 2 m south of the weather tower. The detailed
information for this data set can be seen in the research of Li et al. (2013) and Liu et al. (2011). The following
study divides the soil into three layers: the shallow layer corresponding to 4- to 20-cm depths, the middle
layer corresponding to 20- to 80-cm depths, and the deep layer corresponding to 80- to 160-cm depths.

3. Methods
3.1. Data Preprocessing

The observation interval of soil temperature and moisture in the original data set is 10 min. After removing
the invalid data, the daily average series of the original series is calculated for the following LRC and LRCC

analysis. The daily average series of soil moisture and temperature can be written as mj
i

n o
and tji

n o
respec-

tively, where j denotes soil depth and i denotes time.

3.2. Long-Range Correlation Analysis

The Hurst exponent (H) was first proposed in the study of a ribonucleic acid sequence by Peng et al. (1994). In
the LRC analysis of nonlinear processes, H is an important index used to quantify the longmemory and depict
the statistical correlation of the time series. In the present study, detrended fluctuation analysis (DFA) and
AFA are mostly used to fit H.

While, AFA is better than DFA on dealing with arbitrary and strong nonlinear trends (Gao et al., 2011). By
constructing overlapped sliding fitting windows, the AFA algorithm has the following advantages. (1) It
can extract the global smoothing trend more accurately and effectively remove the self-circulation and
external trend of the series (Riley et al., 2012). (2) It obtains better scaling in the variance of the magnitude
of residuals F(w) versus the length of the windoww dependence (Gao et al., 2012). (3) It can givemore reliable
long-range correlation results (Gao et al., 2011). However, due to the noncoincidence of each fitting window,
there is abrupt change at the boundary of adjacent segments and unsmooth trend for the general series in
the DFA algorithm. Meanwhile, in the research of Gao et al. (2012) about long-range correlations of social and
natural phenomena, Hwas fitted by AFA and DFA, respectively. Finally, they rely on the results of AFA for final
interpretation. In addition, AFA algorithm has also been used in many fields, such as fractal analysis of bio-
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signals (Gao, Lasch, & Chen, 2013), political conflict (Gao, Leetaru, et al., 2013; Gao et al., 2017), and traffic
volume (He et al., 2016).

Therefore, AFA algorithm was used to estimate the H of soil temperature and moisture series in this study.
These series belong to the random walk process. The specific process of fitting H is as follows:

(1) The sliding window (w) is structured to fit the trends of {ti} and {mi}. In the fitting process, the size of each
segment window can be written as w = 2n + 1; there are n + 1 points overlapped between two adjacent
windows. Each window is fitted by M order polynomials, M = 1 in this study. The fitting results of
segments i and i + 1 are recorded as y(i)(l1) and y(i + 1)(l2), respectively. Then, the fitting results for the
overlapped region are defined as y(c)(l). Weighted fitting is based on the distance between the over-
lapped parts and original series.

y cð Þ lð Þ ¼ w1y
ið Þ l þ nð Þ þ w2y

iþ1ð Þ lð Þ; l ¼ 1; 2…; nþ 1 (1)

where w1 ¼ 1� d1
�
n ; w2 ¼ 1� d2

�
n ; d1 and d2 represent the distance between the fitting points and the

actual point in the overlapping part, respectively.

After each segment and each overlapped region have been fitted, the global trends of soil temperature and
moisture can be denoted as {ati} and {ami}, respectively.

(2) The detrended series (the residual of the original series to the global trend) for soil temperature and
moisture can be structured as t(i) � at(i) and m(i) � am(i), respectively. The root mean square residual
at a certain window size (w) can be denoted as F(w). The relation between the F(w) and w yields the H
according to

F1 wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑
N

i
t ið Þ � at ið Þð Þ2

s
∼wH1

F2 wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑Ni m ið Þ � am ið Þð Þ2

r
∼wH2

(2)

where H1 and H2 represent the Hurst exponents of soil temperature and moisture, respectively.

(3) Under double logarithmic coordinates of F(w) and w, H1 and H2 are the slope of a linear fitted by the
ordinary least squares. Timescale ranges of H can be identified by the coverage range ofw corresponding
to the slope.

H can be used to describe persistence or antipersistence of a series. H = 0.5 indicates that the sequence is a
random process (white noise). This indicates that the points have no correlation with each other (with short

Figure 1. Geographical location of the research area.
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memory only); 0.5 < H < 1 indicates the series shows persistence. With the increase of H, the increments in
the series are more likely to be followed by further increases. The intensity of persistence peaks at H = 1;
0 < H < 0.5 indicates that the series shows antipersistence. With the decrease of H, the increments in the
series are more likely to be followed by decreases. The intensity of antipersistence peaks at H = 0.
Furthermore, for persistent series, the noise level is low and the trend is obvious; for antipersistent series,
the noise level is high and the trend is weak.

3.3. Long-Range Cross Correlation Analysis Based on AFA

The LRCC algorithm was first proposed by Podobnik and Stanley (2008). This algorithm uses covariance for
two series in the LRC analysis to carry out multiple timescale cross correlation analysis. In this study, the
cross-correlation exponent (Hcor) is calculated based on the trend extracted by the above AFA algorithm.
The specific algorithm is as follows:

(1) The detrended soil temperature and moisture series are obtained by calculating the difference between
the original series and global trend, respectively. Fcor(w,m, t) is obtained through the covariance of two
detrended series:

Fcor w;m; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑
N

i
m ið Þ � am ið Þð Þ t ið Þ � at ið Þð Þ

s
ewHcor (3)

(2) Under double logarithmic coordinates of Fcor and w, Hcor is the slope of a linear fitted by ordinary least
squares. Timescale ranges of Hcor can be identified by the coverage range of w corresponding to
the slope.

Hcor can be used to describe the consistent or anticonsistent change between two series. Hcor = 0.5 indicates
that two series are independent from each other and have no cross correlation; 0.5< Hcor < 1 indicates that
one series presents a consistent change with the other. With the increase of one series, the increments are
more likely to be found in the other series. The intensity of consistency peaks at Hcor=1; 0<Hcor<0.5 is the
opposite, and the intensity of anticonsistency peaks at Hcor = 0.

4. Results and Analysis

The fluctuation of soil moisture or temperature time series is not completely random. And, LRC of soil moist-
ure or temperature presents a vertical depth variation and timescale variation. The variation mainly includes
two aspects: persistence and intensity.

The soil temperature series and the soil moisture series at the same depth are not independent. LRCC
between these two series also presents the vertical depth variation and timescale variation. The variations
of LRCC also contain consistency and intensity.

To discuss the possible driving factors of these variations, the next section will compare the LRC results and
LRCC results between the sunny slope and shady slope.

4.1. The Diffidence in the LRC Results of Soil Moisture Between the Two Slopes

This section applied the AFA (section 3.2) to fit H of soil moisture. The LRC indices of the two slopes are
plotted in Figure 2. The fluctuation of these series is persistent at most depth. However, at a specific depth
and specific timescale, LRC indices of the two slopes are different. There is an obvious linear relationship
between F(w) and w under the double logarithmic coordinates in each plot, and the slopes (H) are between
0.5 and 1 at most depth. In addition, there is an inflection point in fitting H at each depth and H is varied with
depth. This research focuses on the slow scaling region of soil moisture and soil temperature. The point with
lower root-mean-square error (no more than 0.02 of the minimum of root-mean-square error) and smaller
corresponding timescale is selected as the inflection point at each depth, so that the timescale of the second
interval is more extensive. This means that the LRC of soil moisture displays timescale variation and vertical
depth variation.

From Figure 2, for the two slopes, the intensity of the soil moisture persistence both mutates at 9 days on the
timescale. There is the same timescale variation of soil moisture LRC at the two slopes. F(w) of soil moisture

10.1029/2018JD029094Journal of Geophysical Research: Atmospheres

ZHANG ET AL. 5



can be fitted two H indices (slopes). Both on the two slopes, the slow scaling region covers the time windows
log2w over 3.248, which corresponds to the actual time range over 9 days. H indices are between 0.5 and 1.
Therefore, soil moisture series at this scaling region presents persistence. Both on the two slopes, the fast
scaling region covers time windows from 1.322 to 3.248 (2- to 9-day estimates). H indices are higher than 1
at most depths in this scaling region. It is indicated that the relationship between the future trend and the
past trend of soil moisture cannot be explained by the LRC analysis, in addition to 4, 160-cm depths at the
sunny slope and 20, 80-cm depth at the shady slope.

The persistence of soil moisture is mainly displayed in a slow scaling region. To analyze the vertical depth var-
iation of the soil moisture LRC at the two slopes, H of the slow scaling region at the two slopes was plotted in
Figure 3a. The average soil moisture of the entire study period was calculated as a reference, and the results
of the two slopes are described in Figure 3b.

From Figure 3a, both on the sunny slope and shady slope, H indices of soil moisture are various among
different depths in the slow scaling region. However, there is different vertical depth variation feature at
the two slopes. For the sunny slope, H increases with depth from 4 to 40 cm and peaks at 40-cm depth
(H = 0.788); H decreases with depth from 40– to 160 cm. The soil moisture series of 160-cm depth is similar
to white noise (H = 0.505). For the shady slope, H increases with depth in both shallow and deep layers. The
20-cm depth shows the most significant persistence (H = 0.891); H decreases with depth in middle layer and
has the weakest persistence (H = 0.573) at 80-cm depth. It is illustrated that the intensity of persistence does
not simply ascend or descend with depth. In general, the above results indicate that the persistence of soil
moisture for the shady slope is stronger than that of the sunny slope. In addition, this phenomenon is more
obvious in the shallow layer.

4.2. The Diffidence in the LRC Results of Soil Temperature Between the Two Slopes

This section applied the AFA (section 3.2) to fit H of soil temperature. The LRC indices of the two slopes are
plotted in Figure 4. At a specific depth and specific timescale, LRC indices of the two slopes are different.

Figure 2. Adaptive fractal analysis results plot for soil moisture series in each layer for the sunny slope and shady slope. The above plots (a–g) are from AFA
using a polynomial order of M = 1. The AFA plot is a plot of log2 F(w), as a function of log2w (w corresponding to the timescale). The point of the soil
moisture in shady slope is represented by the blue triangle, and the point of soil moisture in sunny slope is represented by the red circle. The value of H is
the slope of the line. There are two slopes for each depth, and the inflection point is the last point of the first interval (i.e., the green circle in figure (a)).
Inflection point exists at log2 w = 3.2479 at each depth. H fitted by dashed line covers a small timescale (2 < d < 9), and H fitted by solid line covers a large
timescale (d > 9).

10.1029/2018JD029094Journal of Geophysical Research: Atmospheres

ZHANG ET AL. 6



There is an obvious linear relationship between F(w) andw under the double logarithmic coordinates in each
plot. In addition, there is an inflection point in fitting H at each depth and H is also varied with depth. This
indicates that the LRC of soil temperature displays timescale variation and soil depth variation.

Figure 3. (a and b) Comparison of soil moisture H and average soil moisture between the sunny slope and shady slope. In figure a, the longitudinal axis represents
the H value of soil moisture in the slow scaling region (over 9 days), and the horizontal axis represents different soil depths. The red and blue lines correspond
to the results of different sunshine conditions, sunny slope, and shady slope, respectively. In figure b, the longitudinal axis represents the average soil moisture (unit is
volumetric water content %) for the entire study period (9 August 2013–3 December 2014), and the horizontal axis represents different soil depths. The red and
blue lines correspond to the results of different sunshine conditions, sunny slope, and shady slope, respectively.

Figure 4. (a–g) Adaptive fractal analysis plots for soil temperature series in each layer for the sunny slope and shady slope. The above plots (a–g) are from
adaptive fractal analysis using a polynomial order of M = 1. The point of the soil temperature in shady slope is represented by the blue triangle, and the
point of soil temperature in sunny slope is represented by the red circle. The value of H is the slope of the line. There are two slopes for each depth, and the
inflection point is the last point of the first interval (i.e., the green circle in figure (a)). Inflection point exists at log2 w = 2.7004 at each depth. H fitted by
dashed line covers a small timescale (2 < d < 6). For depths 4–40 cm, H fitted by solid line covers a timescale range of 6 < d < 65. And the points after the
black vertical dotted line belong to the third region. For depths 80–160 cm, H fitted by solid line covers a timescale range over 65 days.
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From Figure 4, for the sunny slope and shady slope, the persistence and intensity of the soil temperature
fluctuation both mutate at 6 days on the timescale. There is the same timescale variation of soil temperature
LRC at the two slopes. H indices of soil temperature at 4- to 40-cm depths contain three scaling regions. The
fast scaling region covers time windows log2w from 1.3219 to 2.7004, which corresponds to an actual range
of 2–6 days. The slow scaling region covers time windows of 2.7004–6.0334 (6- to 65-day estimates). Because
the timescales in the third region is too small for linear fitting, the third region (time windows over 6.0334) is
not discussed in this research. H indices of soil temperature at 80- to 160-cm depths contain two scaling
regions. The fast scaling region covers 2–6 days. The slow scaling region covers the range over 6 days. H
indices of soil temperature in the fast scaling region are higher than 0.5. It is indicated that there is persis-
tence of soil temperature in small timescale. Both on shady and sunny slope, the timescale variation of the
soil temperature LRC is most remarkable at shallow layer. There is antipersistence in the large timescale
and persistence at the small timescale at this layer.

The LRC of soil temperature in the slow scaling region (6–65 days) will be mainly discussed in this section. To
analyze the vertical depth variation of soil temperature LRC, H of the slow scaling region at two slopes was
plotted in Figure 5a. The average soil temperature of the entire study period was calculated as a reference in
Figure 5b.

From Figure 5a, on both shady and sunny slopes, H indices of soil temperature are various among different
depths in the slow scaling region. Meanwhile, H of the soil temperature basically increases with depth at the
two slopes. The intensity of antipersistence for the sunny slope is stronger than that of the shady slope. For
the sunny slope, soil temperature displays the antipersistence in shallow layer. The antipersistence weakens
with the depth. The strongest antipersistence is shown at 4-cm depth with H = 0.228. The weakest antiper-
sistence (H = 0.461) can be found at 20-cm depth. Soil temperature displays the persistence at 40-cm depth.
For the shady slope, the vertical stratification structure of H is similar to that in the sunny slope. There is the
strongest antipersistence (H = 0.317) at 4-cm depth. The weakest antipersistence (H = 0.441) is at 20-cm
depth. The persistence peaks at 80- and 120-cm depths with approximately H = 1. The above results reveal
that the persistence intensity of soil temperature increases with depth and the antipersistence intensity
decreases with depth, especially on the shady slope. In addition, there is stronger antipersistence of soil tem-
perature in the sunny slope. This phenomenon is more obvious at 4 cm.

4.3. The Diffidence in the LRCC Results Between the Two Slopes

This section applied the LRCC analysis method (section 3.3) to fit the Hcor between the soil temperature and
moisture. LRCC indices of the two slopes were plotted in Figure 6. There is consistency between the soil

Figure 5. (a and b) Comparison of soil temperature H and average soil temperature between the sunny slope and shady slope. In figure a, the longitudinal axis
represents the value of the H of soil temperature in the slow scaling region (6–65 days), and the horizontal axis represents different depths. The red and blue lines
correspond to the results of different sunshine conditions, sunny slope, and shady slope, respectively. In figure b, the longitudinal axis represents the average
soil temperature of the entire study period (9 August 2013 to 3 December 2014), and the horizontal axis represents different depths. The red and blue lines
correspond to the results of different sunshine conditions, sunny slope, and shady slope, respectively.

10.1029/2018JD029094Journal of Geophysical Research: Atmospheres

ZHANG ET AL. 8



temperature series and moisture series. There is an obvious linear relationship between Fcor(w)) and w under
the double logarithmic coordinates. At a specific depth and specific timescale, LRCC indices of the two slopes
are different. Therefore, the cross correlation between these two series has a multiple timescale property. This
indicates that there is consistent change between these two series. In addition, there is an inflection point in
fitting Hcor at each depth and Hcor varies with depth. This means that the LRCC between the soil temperature
and moisture displays the timescale variation and vertical depth variation.

From Figure 6, for the sunny slope and shady slope, the intensity of the consistency bothmutates at 6 days on
the timescale. There is the same timescale variation of the LRCC at the two slopes. It can be fitted out of two
Hcor indices (slopes). The fast scaling region covers time windows from 1.3219 to 2.7004 (2- to 6-day esti-
mates). There is consistency between these two series only at 4- to 20-cm depths at the two slopes and
160-cm depth at the sunny slope. For 4- to 40-cm depths, the slow scaling region covers time windows of
2.7004–6.0334 (6- to 65-day estimates). The third region (time windows over 6.0334) is not fitted. For depth
80–160 cm, the slow scaling region covers the range over 6 days. There is a consistency at most depths.

Consistency between these two series is mainly displayed in a slow scaling region (6–65 days). To analyze the
vertical depth variation of the LRCC at the two slopes, Hcor of the slow scaling region at the two slopes was
plotted in Figure 7.

From Figure 7, on both the sunny slope and shady slope, the LRCC indices demonstrate a vertical depth
variation. Meanwhile, the intensity of consistency increases with depth and this phenomenon is more
obvious in the shady slope. For the sunny slope, there is antipersistence in 4-cm depth. The consistency
strengthens with depth from 10 to 40 cm. There is no LRCC at 80-cm depth. The strongest consistency is
at 120-cm depth (Hcor = 0.953). For the shady slope, the consistency basically strengthens with depth. The
consistency reaches a maximum at 120-cm depth (Hcor = 0.909). For the 4- to 40-cm depths, the

Figure 6. (a–g) Long-range cross correlation results plot between the soil moisture series and soil temperature series in each layer for the sunny slope and shady
slope. The above plots (a–g) are from the LRCC analysis method, which use a polynomial order of 1 to fit the global trend. The log2 (Fcor(w)) is as a function of
log2w (w corresponding to the timescale). The point of the cross correlation in shady slope is represented by the blue triangle, and the point of cross correlation in
sunny slope is represented by the red circle. The value of Hcor is the slope of the line. There are two slopes for each depth, and the inflection point is the last point on
the first interval (i.e., the green circle in figure (a)). Inflection point exists at log2 w = 2.7004 at each depth. Hcor fitted by dashed line covers a small timescale
(2 < d < 6). For depths 4–40 cm, Hcor fitted by solid line covers a timescale range 6–65 day. And the points after the black vertical dotted line belong to the third
region. For depths 80–160 cm, Hcor fitted by solid line covers a timescale range over 6 days.
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consistency on the shady slope is stronger than that on the sunny slope, and the 120-cm depths are
in contrast.

5. Discussion and Conclusions
5.1. Discussion

The reasons of the timescale variation and the vertical depth variation of LRC and LRCC are discussed in
this section.

There is the same response rate of soil temperature, soil moisture, and hydrothermal interaction to the influ-
ence of external meteorological factors (SR, evapotranspiration [EV], and so on) on the shady slope and sunny
slope. The timescale variation of LRC illustrates the response rate of the soil moisture or temperature to exter-
nal meteorological factors. The timescale variation of LRCC results illustrates the response rate of the hydro-
thermal interaction to SR. The inflection points of H or Hcor for the two slopes appear on the same timescale.
Nomatter it is soil moisture or soil temperature, the intensity of its persistence changes at the same timescale
for the two slopes. And the consistency intensity between them also changes at the same timescale for the
two slopes.

The vertical depth variation of the LRC and LRCC in shallow layer is mainly affected by hydrothermal
interaction driven by SR. The SR condition is significantly different between the shady and sunny slope.
By comparing the LRC and LRCC results between the two slopes in the slow scaling region, both LRC indices
and LRCC indices are different on the two slopes. SR impacts the soil moisture and temperature series by
affecting the hydrothermal interaction, especially in the shallow layer (Atchley & Maxwell, 2011; Helm
et al., 2016). There are two main aspects of the hydrothermal interaction in the soil: On the one hand, with
the increase of SR, soil temperature increases. And then, the EV of soil and vegetation increases and soil
moisture is reduced (Atchley et al., 2011; Zhang et al., 2001). The quantity of surface EV is mainly influenced
by the soil temperature and the soil moisture of the shallow soil. Soil moisture affects water supply of vege-
tation (Huber et al., 2014). Most of the water absorbed from the soil by vegetation roots is used for transpira-
tion. If the soil moisture is too low, plants cannot conduct normal transpiration (Barigah et al., 2013). The
research of Laio et al. (2001) has given the detailed introduction how EV is reduced with decreasing soil
moisture within the rooting zoon. Soil temperature also has a significant effect on the transpiration rate
of vegetation (Wang et al., 2015), but the increase or decrease of the transpiration rate with the soil tempera-
ture depends on the range of soil temperature. Soil surface evaporation is directly affected by soil moisture.

Figure 7. Comparison of soil moisture-temperature Hcor between the sunny slope and shady slope. The longitudinal axis
represents the value of the Hcor, and the horizontal axis represents different depths. The red and blue lines correspond to
the Hcor results of different sunshine conditions, sunny slope, and shady slope, respectively.
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Soil temperature affects the soil surface evaporation by affecting latent heat and sensible heat flux. On the
other hand, the soil EV process can adjust the energy balance of soil system (Li et al., 2015; Villegas et al.,
2009). The EV process can weaken the increase of soil temperature to a certain extent (Atchley & Maxwell,
2011; Fan et al., 2003).

For the shallow layer, the soil moisture LRC and the soil temperature LRC are mainly affected by the SR and
evaporation. For the soil moisture, the shallow water content is mainly used for soil surface evaporation and
plant transpiration, and thus, it is sensitive to SR changes (Stearns & Carlson, 1960). The sunny slope received
more SR than the shady slope. Therefore, the soil moisture of the sunny slope is more affected by the SR,
and the persistence of soil moisture on the sunny slope was significantly lower than that on the shady slope
in shallow layer. For the soil temperature, it is directly affected by the SR and (Gao et al., 2005). In addition,
soil temperature is indirectly affected by soil EV. The EV in soil surface has a negative feedback regulation on
the soil temperature (Fan et al., 2003; Atchley & Maxwell, 2011). The more active the EV process is, the stron-
ger this negative feedback regulation is to the soil temperature. Therefore, the soil temperature series dis-
plays antipersistence at the slow timescale in 4- to 20-cm depth, 4-cm depth with the strongest
antipersistence. Because of the stronger SR at the sunny slope, the antipersistence of soil temperature on
the sunny slope is stronger than that on the shady slope. Interaction between soil temperature and moisture
is also affected by the SR and EV (Lakshmi et al., 2010). The soil temperature increases with the SR. It results
in a phase transformation of soil water, and the soil temperature is reduced in turn (Al Kayssi et al., 1990;
Atchley & Maxwell, 2011). The high intensity of this hydrothermal interaction is represented as a low consis-
tency. In the shallow layer, because of the stronger SR on the sunny slope, there is the more significant
hydrothermal interaction on the sunny slope. Therefore, for the shallow layer on the sunny slope, the ten-
dency of soil moisture to rise with temperature is inhibited more significantly and there is lower consistency.
Especially for 4-cm depth in sunny slope, there is anticonsistency because of the strongest hydrothermal
interaction. The influence of the SR on the soil elements weakens with the depth (Fan et al., 2003).
Therefore, for both the soil moisture and the soil temperature, the persistence or antipersistence intensity
tends to weaken with the depth. And the consistency between them strengthens with the depth. It illus-
trates that intensity of interaction between them also descends with the depth. In addition, Cheng et al.
(2009) proved that roots of cold season grass were distributed above the 20-cm depth. That means the influ-
ence range of plant transpiration is mainly in the shallow layer. It is also indicated that the influence range of
SR on soil elements is mainly concentrated in shallow layer.

For the middle layer, soil moisture persistence can be affected by a variety of factors including groundwater
recharge (GDR) and side runoff supply. The GDR and side runoff have influence on soil moisture by affecting
the water supply (Guo et al., 2010; Zhu et al., 2015). The sunny slope station is closer to the runoff. While, less
runoff is distributed around the shady slope station. Water supply for sunny slope is more stable than that for
shady slope. Therefore, the persistence of the soil moisture in the shady slope is obviously weaker than that
on the sunny slope in this layer. The moisture series on the shady slope shows the higher level of noise. In
addition, although there is the same vegetation type on shady and sunny slopes, sunny slopes have better
growth conditions (sufficient SR and stable water supply), which may make the number and coverage of
vegetation on sunny slopes higher than on shady slopes. As a result, the infiltration rate of precipitation
and surface runoff is faster in shady slope. This also weakens the persistence in 80-cm shady slope and
improves its noise level. Hydrothermal interaction intensity in sunny is slightly affected by SR in this layer.
The effect of SR on soil elements tends to disappear over 40-cm depth, weakening with the depth (Fan
et al., 2003). There is the more significant hydrothermal interaction on the sunny slope due to the stronger
SR. Therefore, the consistency between soil moisture and soil temperature in the sunny slope is also weaker
than that on the sunny at 40-cm depth.

For the deep layer, seasonal ice meltwater driven by SR mainly affects the hydrothermal interaction intensity,
the soil moisture LRC in the sunny slope. Seasonal meltwater on the sunny slope is less stable within a year
because of the amount of SR change. Seasonal ice and snow meltwater directly affect the moisture by affect-
ing the supply of deep soil water (Zhu et al., 2015). Therefore, the persistence of soil moisture on the sunny
slope is generally weaker than that on the shady slope. The intensity of the persistence on the sunny slope
decreases with the depth in deep layer. Furthermore, the persistence of soil moisture at 160-cm depth is sig-
nificantly affected. The seasonal meltwater indirectly affects the hydrothermal interaction by affecting the
soil moisture. Due to the stronger effect on the sunny slope, the consistency between the soil moisture
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and the soil temperature on the sunny slope weakens with depth in deep layer. The intensity of consistency
on the sunny slope is considerably lower than that on the shady slope at 160-cm depth.

According to the above results, the vertical depth variation in different layers is illustrated in Figure 8. At large
timescales, each layer has its own main influence factors, and these factors can be used to explain the differ-
ence in H or Hcor between the two slopes. In the shallow layer, the soil moisture, soil temperature, and the
interaction between them are all affected by SR and EV. In addition, these indicators have a stronger effect
on the sunny slope. In the middle layer, soil water is supplied by side runoff (Side) and GDR. These factors
have a stronger effect on the soil moisture on the sunny slope. In the deep layer, ice and snow meltwater
supply main influence factor in this layer. Moreover, it has the strongest influence on the soil moisture for
the sunny slope, then on the soil temperature and hydrothermal interaction for the sunny slope, and the
weakest influence on the moisture is for the shady slope.

5.2. Conclusions

In this study, the soil was stratified to calculate the indices of LRCC and LRC at different depths. The H indices
of soil moisture and soil temperature and Hcor between them were compared between different sunshine
conditions. LRCC between the soil temperature andmoisture and LRC of the soil temperature or moisture illu-
minated the vertical depth variation and timescale variation.

Based on the LRC and LRCC results, there are three common characteristics in the sunny slope and the
shady slope.

First, the fluctuation of soil temperature or moisture is not completely random. At the slow timescale, the soil
moisture series displays persistent in all depths. The soil temperature series displays antipersistence in
shallow layer and persistence in the other layers. Soil temperature and moisture are not independent but
with consistent change in nearly all depths.

Second, for all depths on the two slopes, the persistence or antipersistence intensity of soil temperature
changes over 6 days, the persistence intensity of soil moisture changes over 9 days, and the consistency
intensity between soil temperature and soil moisture changes over 6 days. The response rate of soil tempera-
ture or soil moisture or interaction between them to external factors is the same on the two slopes.

Third, LRC and LRCC indices all show stratification heterogeneity. For the two slopes, the persistence of soil
moisture strengthens with depth in shallow layer; the antipersistence of soil temperature decreases with
depth in shallow layer and the persistence increases with depth in the other layers; the consistence between
them strengthens with depth in shallow layer.

Figure 8. Three-layer structure of soil heat and water long-range correlations and long-range cross correlation. The arrows of different colors correspond to
different factors that affect the soil system in the slow scaling region. The large arrow expresses a strong influence and small arrow expresses a weak influence.
A table filled with color represents the value range of H or Hcor in a layer. The red arrow represents solar radiation (SR). The light blue arrow represents
evapotranspiration (EV). The blue arrow represents the ice and snow meltwater supply (ISW). Green arrows pointing inside and outside represent the side runoff
supply (Side) and groundwater recharge (GDR), respectively.
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While, LRC and LRCC results on the two slopes also have differences. The soil system can be stratified to three
layers to explain these differences over the large timescales, which is described in Figure 8. Three conclusions
are summarized.

First, for soil moisture, the persistence of the shady slope is stronger than that of the sunny slope in the
shallow layer because of less solar radiation and evapotranspiration affects. In the middle layer, groundwater
recharge and side runoff supply are more stable on the sunny slope, and thus, it results in the stronger
persistence of soil moisture on the sunny slope. In the deep layer, because the seasonal meltwater driven
by solar radiation has a stronger influence on the sunny slope, the persistence of soil moisture on the sunny
slope was considerably weaker than that on the shady slope. In addition, the persistence on the sunny slope
weakens with depth, whereas the persistence on the shady slope is the opposite.

Second, for soil temperature, in the shallow layer, because of the stronger hydrothermal interaction driven by
solar radiation and evapotranspiration on the sunny slope, antipersistence of soil temperature on the sunny
slope is stronger than that on the shady slope. In the middle layer, the persistence of soil temperature on the
sunny slope is similar with that on the shady slope. In the deep layer, the persistence of soil temperature on
the shady slope slightly strengthens with depth.

Third, for interactions between soil temperature and moisture, in the shallow layer, because of stronger solar
radiation on the sunny slope, the consistency between the two series on the sunny slope is weaker than that
on the shady slope. In the middle layer, the consistency on the shady slope is stronger than that sunny on the
slope at 40-cm depth, with the effect of solar radiation on the sunny slope. In the deep layer, with indirect
meltwater influence on the sunny slope, the consistency on the sunny slope slightly weakens with depth,
whereas consistency on the shady slope is the opposite.

In addition, there are many other contents worth further study. For example, the relationship between the
future trend and the past trend of soil temperature at 80- to 160-cm depths sunny slope cannot be explained
by the LRC analysis. This may be more related to the soil structure, thermodynamic properties, and so on. For
80-cm depth on the sunny slope, there is no interaction between soil moisture and soil temperature. The
reason behind this may be related to the change of the soil hydrothermal process in this depth and still
needs further investigation.

LRC indices can reflect the predictability of series (Zhu et al., 2010). By quantifying the intensity of persistence,
the predictability of soil temperature and moisture can be reflected under different timescales to a certain
extent. Adding the timescale characteristics of variables to the climate model can improve the simulation
results of the model (Blender & Fraedrich, 2003; Bunde et al., 2001). There is higher predictability for the series
with higher persistence intensity. Through the above results, it can be found that LRC of soil moisture, LRC of
soil temperature, and LRCC between soil moisture and temperature all display vertical depth and timescale
variations. The intensity of persistence or antipersistence may change at different timescales and different
depths. This phenomenon may exist in other regions. When used in potential modeling, managing, or
monitoring approach, researchers can preselect time windows and soil depths with higher LRC indices. It is
more reliable for the simulation and prediction of indicators related to soil based on soil depth and the
natural environment with stronger persistence.

In addition, this study takes the typical geographical environment as an example and reveals the potential
influence of external meteorological factors on predictability of soil moisture and soil temperature. Such
potential influence also exists in other regions, but the intensity and significance of the influence are differ-
ent. Through the comparison of LRC and LRCC results from these two different geographical environments,
this study analyzed the influence process of meteorological factors (solar radiation, evapotranspiration, and
so on) on stratification heterogeneity of LRC and LRCC. The parameters related to the soil in land surface
process models are set in advance according to empirical values or model calibration presently. While, in
the determination of soil water and heat optimum parameters, the potential influence of meteorological
factors should also be considered. The above conclusions can assist parameter optimization in modeling
under different meteorological conditions (sunshine, evaporation, etc.).

In this study, the influence of external meteorological factors on soil system is qualitatively analyzed. In fact,
meteorological factors play an important role in soil system research, and they will affect the evolutionary
trend characteristics of soil moisture and temperature series. Combination of meteorological data, the influ-
ence of them on the soil system could be considered quantitatively in the future.
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GLDAS2.0 and GLDAS2.1 shows cooling and warming trends, respectively, and their precipitation have high uncertainty in the Tibetan Plateau

CMORPH‐BLD offers the best precipitation on average, and combining it with GLDAS2.0 forcing data generates better runoff simulations

We use a numerically downscaled climatology to diagnose characteristics of downslope windstorms known as Sundowners that occur along the Central California coast

Sundowners are manifested as strong northerly downslope winds along the Santa Ynez Mountains that are part of a lee slope jet forced by internal gravity wave breaking aloft

The mountain wave is forced by the synoptically driven strong jet of north‐northwesterly winds located just offshore, which propagates into and through the Santa Ynez Valley

With no solar radiation measurements and cloud direct visual observations an empirical model for global solar
 radiation has been derived

This model has been obtained under cloudy skies during the longest total solar eclipse of the 21st century at
 Tianhuangping (Zhejiang), China

The results indicate that the solar radiation model is quite acceptable and representative of that which could
 be have happened at that time
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