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Abstract: Financial time series analyses have played an important role in developing some of the
fundamental economic theories. However, many of the published analyses of financial time series
focus on long-term average behavior of a market, and thus shed little light on the temporal evolution
of a market, which from time to time may be interrupted by stock crashes and financial crises.
Consequently, in terms of complexity science, it is still unknown whether the market complexity
during a stock crash decreases or increases. To answer this question, we have examined the temporal
variation of permutation entropy (PE) in Chinese stock markets by computing PE from high-frequency
composite indies of two stock markets: the Shanghai Stock Exchange (SSE) and the Shenzhen Stock
Exchange (SZSE). We have found that PE decreased significantly in two significant time windows,
each encompassing a rapid market rise and then a few gigantic stock crashes. One window started in
the middle of 2006, long before the 2008 global financial crisis, and continued up to early 2011. The
other window was more recent, started in the middle of 2014, and ended in the middle of 2016. Since
both windows were at least one year long, and proceeded stock crashes by at least half a year, the
decrease in PE can be invaluable warning signs for regulators and investors alike.

Keywords: permutation entropy; efficient market hypothesis; stock crash; complexity change

1. Introduction

Financial time series analyses are of enormous theoretical and practical importance. There are a
few main efforts. One effort concerns the distribution of the time series and the dynamical evolution of
the distributions. Another effort concerns the correlations. If the efficient market hypothesis (EMH) is
of some relevance to reality, then a market will be very unpredictable due to its capability to instantly
digest any new information. [1–5]. As a consequence, correlation analysis would be a less important
issue than distribution analysis [6]. Indeed, extensive literature exists on distribution analysis of
financial time series. Representative ones include Gaussian [7], Lévy [6,8], leptokurtic [9,10], truncated
Lévy [11], and Tsallis distribution [12].

The third effort concerns stock crashes and financial crises, which are among the most terrifying
events in the financial world. On the one hand, such events challenge the EMH, as they often induce
panic and herding behavior. On the other hand, they have motivated many interesting empirical
studies on the collapse of a financial system or the entire market (i.e., the systemic risks). This is
especially true after the 2008 global financial crisis. Important works along this line include studies
on bank contagion [13,14], bank capital ratios and bank liabilities [15,16], contagion, spill-over effects,
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and co-movement in financial markets [17–20], forewarning of financial crises [19–26], and structural
changes of financial networks [26–29].

The above three efforts are related to the EMH in one way or another. For ease of discussion, we
need to distinguish among three forms of EMH [1–5]. One is the “weak” form, which states that prices
on traded assets fully reflect all past publicly available information. The second is the “semi-strong”
form, which states that not only prices fully reflect all publicly available information, but also that
prices instantly change to reflect new public information. The third is the “strong” form, which states
that prices instantly reflect even hidden “insider” information. Thus, whatever form of efficiency
is referred to, if a market behaves as the EMH stipulates, the market will be fully random without
memory and the variation of price will be very unpredictable. These properties form the basis for
testing whether EMH holds or not.

Empirical studies testing the validity of EMH in various markets include the use of traditional
statistical analysis such as computing autocorrelation, variance ratio, delay, etc. [30–34], and using
metrics from complexity science. By the nature of EMH discussed above, the notion of deterministic
complexity is more pertinent than structural complexity in testing the validity of EMH, since
deterministic complexity measures the randomness of the data and is a nondecreasing function
of the entropy rate (e.g., Shannon entropy or Kolmogorov–Sinai entropy), while structural complexity
is maximized for neither high nor low randomness [35–39]. In this paper, by market complexity, we
mean the deterministic complexity, and by market complexity change, we mean deviations of the market
from a complete randomness as stipulated by EMH. Mechanisms responsible for this behavior could
be multiple, including policy-induced nonlinear effects. We emphasize that the randomness discussed
here pertains to the entire market, though it can be readily extended to study individual companies.
The distinction between the entire market and individual companies of the market is that a composite
index of a stock market is inherently more random than stock prices of some of the companies, since
the index is a weighted average of the prices of all the companies listed in the market. It is more
difficult for the entire market to deviate from EMH than for an individual company to do so.

Three good ways have been developed from complexity science for testing the validity of EMH.
One is to directly measure the memory in the market. An apt measure of memory is the Hurst
parameter H, which lies in the unit interval. Depending on whether H is smaller than, equal to,
or larger than 1/2, a system is said to have anti-persistent, short-term, or persistent long-range
correlations [36,40]. Deviations of H from 1/2 is strong evidence of inconsistency with the EMH [41–49].
Another approach is to use the Lempel-Ziv complexity (LZ) [38,39,50,51]. Here, it is particularly
worth noting that there appears to be more predictability in individual stock returns when using
high-frequency instead of low-frequency daily data [38,39]. The third approach is to use permutation
entropy (PE), which quantifies the deviation of a market from a fully random state. Interesting prior
research suggests that emerging markets are less efficient than developed ones [52–54]. PE was first
introduced in [55] as a measure of the departure of a time series under study from a completely
random one: the closer the value of the PE to 1, the more stochastic the time series is. Since then, many
important works have been developed to enrich the study of PE [56–62]. Over the last decade, besides
applications in econophysics, PE and related metrics have been extensively used to study various
kinds of biological time series [59,63–73].

Many published works along the line of distribution analysis and testing for the validity of EMH
focus on the gross property of some economic variables in a given long time span, sometimes with
quasi-universal features that are shared by many different markets. While in physics those features
may be associated with the invariants of the financial system (and hence are extremely important), in
finance they amount to average behavior, and thus may not shed much light on the temporal evolution
of a market. Consequently, they cannot help much with the studies of stock crashes and financial
crises. To overcome this difficulty, in this paper we propose to work with high-frequency financial
data instead of low-frequency (such as daily) data. We examine whether PE can be further utilized to
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quantify complexity changes of the two stock markets in China—namely, the Shanghai Stock Exchange
(SSE) and the Shenzhen Stock Exchange (SZSE).

The remainder of the paper is organized as follows. In Section 2 , we describe the data used in the
study, the algorithm of PE for detecting the dynamical changes in time series, and a nonlinear adaptive
filter for determining a trend signal from a highly fluctuating signal. In Section 3, We compute PE day
by day, then examine the dynamic changes of complexity in Chinese stock markets. In Section 4, we
make concluding discussions.

2. Data and Method

2.1. Data

We analyze the high-frequency (per minute) composite indices of SSE and SZSE from January
2, 2003 to August 8, 2016. In China, the trading time of a trading day for both markets is from 9:30
to 11:30 in the morning and 13:00 to 15:00 in the afternoon from Monday to Friday. Thus there are
240 data points for each trading day.

Concretely, we examine the minutely logarithmic yields of the composite indices of SSE and SZSE,

Rt = ln(Pt)− ln(Pt−1) (1)

2.2. PE for Detecting Dynamical Changes in a Time Series

PE is a measure from chaos theory that can tell how much a time series deviates from a completely
random one [55,59]. It can be described as follows.

Given a time series {x(i), i = 1, 2, · · · }, one can construct embedding vectors Xi = [x(i), x(i +
L), · · · , x(i+(m− 1)L)], where m is the embedding dimension and L is the delay time. The elements of
Xi can be sorted in ascending order as [x(i + (j1− 1)L) ≤ x(i + (j2− 1)L) ≤ · · · ≤ x(i + (jm − 1)L]. In
case an equality occurs (e.g., x(i + (jk1− 1)L) = x(i + (jk2− 1)L)), then these two elements are ordered
according to whose j’s are smaller: if jk1 < jk2, then we write x(i + (jk1 − 1)L) ≤ x(i + (jk2 − 1)L).
Therefore, the vector Xi is mapped onto (j1, j2, · · · , jm), which is one of the m! permutations. There
will be at most m! different (j1, j2, · · · , jm), since some of them can be the same. Denote the number
of distinct (j1, j2, · · · , jm) by K, which cannot be greater than m!. Let the probability for each one
of them be denoted by P1, P2, · · · , PK. The permutation entropy (denoted by Ep) of the time series
{x(i), i = 1, 2, · · · } is defined as

Ep(m) = −
K

∑
j=1

Pj ln Pj. (2)

The maximum of EP(m) is ln(m!) when Pj = 1/(m!). It is convenient to work with

0 ≤ Ep = Ep(m)/ ln(m!) ≤ 1. (3)

To detect interesting dynamical changes in a time series, one can partition a time series into
overlapping or non-overlapping segments of short length, compute PE from each segment, and
examine how PE changes with the segments. This approach was first introduced in [59]. Here, we
apply this approach to compute PE from the minutely logarithmic yields of the composite indices of
SSE and SZSE on each day, then check how PE varies with time.

2.3. Detrending Method

The detrending method to be used here is based on a nonlinear adaptive multiscale
decomposition [74–77]. It first partitions a time series into segments of length w = 2n + 1, where
neighboring segments overlap by n + 1 points (this introduces a time scale of w+1

2 τ = (n + 1)τ, where
τ is the sampling time).
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Each segment is then fitted with an optimal polynomial function. We denote the fitted polynomials
for the i-th and (i + 1)-th segments by y(i)(l1) and y(i+1)(l2), respectively, where l1, l2 = 1, · · · , 2n + 1.
Then, we obtain a single function for the overlapped part by weighting the consecutive segments as
follows:

y(c)(l) = w1y(i)(l + n) + w2y(i+1)(l), l = 1, 2, · · · , n + 1, (4)

where w1 =
(
1− l−1

n
)

and w2 = l−1
n are weights measuring how close between the lth point of the

overlapped part and the centers of y(i) and y(i+1), respectively. Such a weighting can maximally
suppress the effect of complex nonlinear trends on the scaling analysis. This filter has been shown to
be excellent in determining a trend, removing noise, and performing fractal and multifractal analysis.

3. Results

3.1. Dynamic Changes of Markets’ Complexity

For a number of embedding dimensions m and delay time 1, we have computed the value of
the PE for the per-minutedata of SSE and SZSE on each day. The shape of the curve for the temporal
variations of the PE for different m is similar. Below, we use m = 5 for illustration. The results are
shown in Figures 1 and 2 for the two markets, respectively, as the blue curves. For ease of interpretation,
the trend signals are obtained using the nonlinear adaptive filter described above (with a temporal
resolution of 131 days) and plotted in each figure as the red curves. To compare with the composite
indices of the two markets, they are re-normalized and plotted there as the black curves. We clearly
observe that the curves of PE for the two markets exhibit a significant downhill and uphill during two
periods: one is from the middle of 2006 to the end of 2010, and the other is from the middle of 2014 to
the beginning of 2016. During both periods, China’s stock markets encountered serious systemic risks.
Therefore, a significant decrease in PE can be readily related to the change of markets’ complexity.
Specifically, on the one hand, the first dramatic decrease of PE in either period coincided with the
initiation of bull markets; on the other hand, the significant decrease and subsequent recovering of PE
strongly suggest that the stock markets in China are far less developed, since the PE is very close to 1
for those developed markets, as shown in [61].
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Figure 1. Dynamic changes of the Shanghai market’s complexity characterized by the permutation
entropy (PE; the blue curve) and its trend (the red curve); the rescaled Shanghai Stock Exchange (SSE)
Composite Index is presented as the black curve. The smallest PE occurred on January 4 and 7, 2016,
when the market was closed due to crashes triggered by the implementation of the circuit breaker
mechanism; soon after, the circuit breaker approach was abandoned.
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Figure 2. Dynamic changes of the Shenzhen market’s complexity characterized by the PE (the blue
curve) and its trend (the red curve); the rescaled Shenzhen Stock Exchange (SZSE) Composite Index is
presented as the black curve. The smallest PE occurred on January 4 and 7, 2016, when the market was
closed due to crashes triggered by the implementation of the circuit breaker mechanism; soon after, the
circuit breaker approach was abandoned.

Further, we compared the difference of PE between the normal periods and the turbulent periods.
There were two turbulent periods. They were not defined based on the curves shown in Figures 1
and 2. Rather, they were defined by general understanding and accepted by relevant governmental
agencies in China. The first one was from the end of 2006 to the end of 2010. It started with a strong
bull market until October 2007. Then came a series of stock crashes, followed by a gigantic impact from
the global financial crisis. Although the Chinese government allocated 4 trillion funds to stimulate the
economy, the effect of the global financial crisis lasted until the end of 2010, when the US economy
largely recovered [24]. The other turbulent period was more recent, which was from the second half of
2014 to February 2016. This period was also characterized by an unusually strong bull market until
June of 2015, then came a few gigantic stock crashes until the market was finally stabilized around
February of 2016. All other periods are collectively called “normal periods” in this paper. We have
computed the probability density function (PDF) for the PE in these two types of periods. The results
are shown in Figure 3. Visually, the distributions in the two periods are very different. This is formerly
tested by conducting a Kolmogorov–Smirnov test (K-S test). The P-value of the K-S test is far below
0.01, meaning that the distributions of PE for normal periods and turbulent periods are significantly
different. Moreover, a t-test is conducted to examine whether the mean value of PE in turbulent periods
is significantly smaller than that in normal periods. The mean value of PE for SSE in turbulent periods
is 0.83, while in normal periods it is 0.96, and the P-value of our t-test is far less than 0.01, meaning
that the PE in turbulent periods is significantly smaller than that in normal periods. Therefore, the
market complexity in turbulent periods can be concluded to be significantly different from that in
normal periods—clearly, significantly smaller than that in normal periods.
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Figure 3. A comparison of probability density function (PDF) for PE between the normal periods (blue)
and the turbulent periods (red) for (a) SSE and (b) SZSE.

3.2. Shenzhen vs. Shanghai Market

As can be clearly seen from Figures 1 and 2, the values of PE for the SSE and SZSE are different.
To quantify how different they are, we have further computed the probability that the PE of the SSE is
smaller than that of the SZSE. This can be computed by the following ratio:

Probability(Pesh > Pesz) = Number o f days when (Peshanghai > Peshengzhen)/Total number o f days (5)

We find Probability(Pesh > Pesz) = 83%. Therefore, for most trading days, the PE in the Shenzhen
market was smaller than that in the Shanghai market, suggesting that the Shanghai market is relatively
more stochastic than Shenzhen market (i.e., the Shenzhen market is a little more structured and
predictable). This reflects the fact that the Shenzhen market consists most of the medium- to small-sized
companies in China; they are relatively less stable than the large companies.

3.3. Surrogate Data Analysis

To better appreciate how significantly the PE of the composite indices are smaller than 1 for
the SSE and SZSE, for each trading day we have also computed PE for the shuffled surrogate of the
original series. Due to the similarity, only the the result for SZSE is shown in Figure 4 as the green
curve. Clearly, the PE of the shuffled data is very close to 1, and on most days larger than the daily PE
based on the original high-frequency stock index data. As expected, the results based on the shuffled
data are similar to the results reported in [61] based on low-frequency daily data.
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Figure 4. The PE of SZSE (the blue curve) and its trend (the red curve); as a comparison, PE of shuffled
data for SZSE is also shown as the green curve.
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4. Concluding Discussions

Financial time series analyses have played an important role in developing some fundamental
economic theories. However, many of the analyses of financial time series published so far focus on
the long-term behavior of a market. While in mathematics and physics, the long-term behaviors are
associated with invariants of the system and are therefore are of fundamental importance, in finance,
long-term behaviors amount to average behavior, and thus shed little light on the temporal evolution
of a market. However, a market is a wild beast, consisting of strong bull markets which offer investors
(big or small), opportunities to make huge profits, and stock crashes and financial crises, which often
wipe out enormous wealth on paper. Intrigued by the question of whether a market’s complexity
may change during a stock crash or financial crisis, we have sought to analyze high-frequency stock
indices using the PE. By examining the temporal variation of the PE in the two Chinese stock markets
(SSE and SZSE), we have found that PE decreases significantly in two significant time windows—each
encompassing a rapid market rise and then a few gigantic stock crashes. One window started in the
middle of 2006, long before the 2008 global financial crisis, and continued up to early 2011. The other
window was more recent, starting in the middle of 2014, and ending in the middle of 2016.

Our result has a few important implications. First, since both windows with significant drop in
the PE were at least one year long, and proceeded stock crashes by at least a half year, the decrease in
PE can be an invaluable warning sign for regulators and investors alike. Second, the US stock market is
generally thought to be efficient [2]. Indeed, we have applied the same approach to the high-frequency
data of Dow Jones Industrial Average (DJIA), and found that the PE of DJIA is close to 1, even during
the 2008 global financial crisis. This is in stark contrast with the results shown for the Chinese stock
market, which has not been efficient most of the time in the past 13 years, especially in the two long
turbulent time periods identified here. Thus, our result constitutes one of the most compelling pieces
of evidence that emerging markets like those in China deviate significantly from what the EMH has
stipulated—especially during stock crashes and financial crisis. Much of this structural change may be
attributed to governmental interference [5]. Third, our finding may contain some universal element,
in the sense that the phenomenon identified is not unique to China but shared by many emerging
markets and even some developed markets. This issue can be readily sorted out by joint efforts from
an international community.
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