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Spatial selectivity estimation is crucial to choose the cheapest execution plan for a given query in a query optimizer.
This article proposes an accurate spatial selectivity estimation method based on the cumulative density (CD) histograms,
which can deal with any arbitrary spatial query window. In this method, the selectivity can be estimated in original logic
of the CD histogram, after the four corner values of a query window have been accurately interpolated on the continuous
surface of the elevation histogram. For the interpolation of any corner points, we first identify the cells that can affect
the value of point (x, y) in the CD histogram. These cells can be categorized into two classes: ones within the range
from (0, 0) to (x, y) and the other overlapping the range from (0, 0) to (x, y). The values of the former class can be used
directly, whereas we revise the values of any cells falling in the latter class by the number of vertices in the correspond-
ing cell and the area ratio covered by the range from (0, 0) to (x, y). This revision makes the estimation method more
accurate. The CD histograms and estimation method have been implemented in INGRES. Experiment results show that
the method can accurately estimate the selectivity of arbitrary query windows and can help the optimizer choose a
cheaper query plan.

Keywords: cumulative density (CD) histogram; selectivity estimation; window queries; spatial database; spatial query
optimization

1. Introduction

With the increasing accuracy and volume of spatial data
needed to be stored and managed, it has become more
important to execute queries efficiently on spatial data
(1). Many improved methods outside the query optimiza-
tion kernel of the database management system (DBMS)
have been explored in recent years, such as compression
and storage of spatial data (2), multi-scale spatial data-
base (3–5), and progressive transmission of spatial data
(6,7). However, it is also necessary to support spatial
query optimization in the kernel of DBMS, requiring the
query optimizer to estimate the selectivity and cost of
spatial operations, so that it can choose the query execu-
tion plan with the least estimated cost (8).

Spatial selectivity estimation is crucial in a query
optimizer to choose a good execution plan in a given
query (9). Selectivity estimation attempts to ascertain
how many data items will be retrieved (the selectivity)
and what the I/O complexity will be in servicing the
query. However, the I/O processing costs are usually
more dominant than the CPU processing costs in a query
(10), because I/O processing is a critical bottleneck in
the performance of a computer system. Therefore, selec-
tivity is one of the most important parameters in the cost
model.

Histograms are the most popular for estimating the
query result size in a relational database (11). Histogram-
based technique works by partitioning the dataset into a

small number of subsets called “buckets,” and then using
approximations for each bucket to model the distribution
of the tuples within. Query result estimations are then
obtained by processing the query against the buckets and
the approximations used therein.

Of the various spatial histograms, the cumulative
density (CD) histogram performs the best and gives
fairly accurate results for selectivity estimation of win-
dow queries (selecting items that overlap a given query
window) (10), bearing in mind that it can only be
adapted to window queries. In recent years, many spatial
histograms have been used for spatial selectivity estima-
tion. Most spatial histograms are used for spatial selec-
tion operators, i.e., MinSkew (11), SQ (8), CD (10), and
Euler (12–14); however, some have been used for spatial
join operators, i.e., GH (9). The CD histogram is the
most widely used of these histograms, despite only being
applicable to window queries. The first reason for this is
that it performs the best and gives fairly accurate results
for selectivity estimation. The second reason is that the
window query is the most common, most basic, and has
also been widely used as the subject of analysis in the
other related studies (15–17). This article focuses on esti-
mating (analyzing) the selectivity of window queries on
spatial databases.

The fairly accurate results from the CD histogram
mentioned above are based on the assumption that the
query window aligns with the boundary of a grid cell. In
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most applications, query windows rarely align with the
boundary of a grid cell, in which case the estimated
value may be incorrect (18,19). Chi et al. proposed the
generalized cumulative density (GCD) (18) and general-
ized cumulative density method based on the Intersection
area ratio (GCID) (19) algorithms to estimate the selec-
tivity of a query window not aligning with the boundary
of a grid cell. The GCID algorithm is finer than the
GCD algorithm, because the latter method takes account
of the distribution density of spatial data via an array
iArea(i, j). However, the iArea(i, j) array cannot accu-
rately reflect the distribution density of the coverage vec-
tor data. This article proposes a more accurate spatial
selectivity estimation method based on a CD histogram
and gives an implementation thereof in INGRES, which
is an open source DBMS. Besides the implementation in
this article, PostGIS also integrates a spatial selectivity
estimation module in its query optimizer. However, as
shown in the experiments in Section 5.1, the selectivity
estimation error in PostGIS is high, because of the multi-
ple count problems in its spatial histogram.

The rest of this article is organized as follows. In
Section 2, we review the selectivity estimation problem
for query windows not aligning with the boundary of a
grid cell, and discuss the limitations of the two methods
from (18). In Section 3, we present a more accurate
selectivity estimation method for an arbitrary query win-
dow based on a CD histogram and discuss the advan-
tages and disadvantages thereof. Section 4 presents the
proposed design and implementation in INGRES. In Sec-
tion 5, we describe two experiments, the first of which
verifies that the proposed method is more accurate than
the other five methods mentioned above, while the other
confirms that a cheaper query plan can be found using
the proposed method implemented in INGRES. Section 6
contains the concluding remarks and further work.

2. Related work

2.1. CD histogram and its selectivity estimation

The CD histogram is one of the most important
techniques for approximating range query selectivity in
spatial databases. Assuming all objects are represented
by their MBRs, the CD algorithm can be adapted for
browsing applications as follows. Given a grid of R2

with resolution c, construct four histograms Hll, Hlr, Hul,
and Hur. The size of each histogram is N with each
bucket corresponding to a grid cell. A bucket of Hll

keeps the number of lower-left vertices that fall within
the bucket. Similarly, Hlr, Hul, and Hur keep the counts
of the lower-right, upper-left, and upper-right vertices of
the objects, respectively. To improve the query effi-
ciency, all the histograms are cumulative, in the sense
that a bucket H(i, j) stores the number of vertices in the
region(0 0, i j), which covers the range from cell(0, 0)
to cell(i, j). Therefore, for a query (xa ya, xb yb), the
number of intersecting objects can be calculated as

follows. Figure 1(a) shows an example of three objects
and a query at (xa ya, xb yb), while Figure 1(b) depicts
the four histograms constructed by the CD algorithm.
The number of objects intersecting the query is
given by: Hll(xb, yb) − Hlr(xa − 1, yb) − Hul(xb, ya − 1) +
Hur(xa − 1, ya − 1) = 3 − 0 − 1 + 0 = 2.

However, the fairly accurate results from the CD his-
togram are based on the assumption that the query win-
dow aligns with a boundary of the grid cells. In most
applications, the query window rarely aligns with a
boundary of the grid cells, in which case, a large error
may occur (18). Figure 2 shows a query window not
aligning with the boundary of a grid cell as depicted by
Q. According to the CD estimation algorithm, the win-
dow Q should be adjusted to coincide with window Q′,
giving an estimated selectivity of 2, whereas the real
selectivity is 1.

2.2. Two improved estimation algorithms

Chi et al. presented the GCD algorithm based on the
query window area ratio in Ref. (18), as given by Equa-
tion (1). This algorithm is perhaps better than the algo-
rithm in Section 2.1. However, there is an implicit
assumption in this method that the spatial data is uni-
formly distributed in the adjusted query window (Q′).
This assumption is so unrealistic that it may result in a
high selectivity estimation error.

SðQÞ ¼ Hllðxb; ybÞ � Hlrðxa � 1; ybÞ � Hulðxb; ya � 1Þð
þHurðxa � 1; ya � 1ÞÞ � AreaðQÞ

AreaðQ0Þ
(1)

where Area(Q) and Area(Q′) are the areas of the original
query window and the adjusted query window,
respectively.

To eliminate the assumption mentioned above, Ref.
(19) proposed the GICD algorithm. It introduces a fifth
histogram (iArea) in addition to the Hll, Hlr, Hul, and Hur

histograms. The value of iArea(i, j) indicates the area
ratio that spatial objects cover in cell(i, j). Then, the
selectivity of any query window can easily be estimated
by Equation (2). Experiments in Ref. (19) showed that
the estimation results using GICD are more accurate than
those using GCD, because iArea(i, j) can approximately
describe the distribution density of spatial objects.

SðQÞ ¼ Hllðxb; ybÞ � Hlrðxa � 1; ybÞ � Hulðxb; ya � 1Þð
þHurðxa � 1; ya � 1ÞÞ
�
Pl

i¼k

Pn

j¼m
ðiAreaði;jÞ�Areai;jðQÞÞ

Pl

i¼k

Pn

j¼m
iAreaði;jÞ

;

(2)

where k and l are the cell position values of the x-axis
intersecting the query window; n and m are the cell posi-
tion values of the y-axis intersecting the query window;
iArea(i, j) is the area ratio of the intersection region
between cell(i, j) and the objects, and Areai,j(Q) is the
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area of the intersection region between cell(i, j) and the
query window.

In fact, it may be better to use the iArea(i, j) to
represent the spatial distribution density of polygon data,
only if their features are discrete distributions and the
feature sizes are preferably within the cell size. However,
if their features continuously cover most of the area of a
map with almost no holes (for example, land-use data),
the value of iArea(i, j) may not accurately reflect the
spatial distribution of the features, because most of the
values of iArea(i, j) within the coverage data are 1, those
disjoint from the coverage data are 0, and the values of
iArea(i, j) overlapping the boundary of the coverage data
may be any value between 0 and 1. Since coverage data
is very common in most applications, the GICD his-
togram is not well suited to coverage vector data, line
data, or point data.

3. Accurate selectivity estimation algorithm based
on CD histogram

3.1. Accurate spatial selectivity estimation algorithm

An accurate selectivity estimation algorithm can be
developed by subtly revising the histogram values of the
four corner points of the query window, rather than
revising the selectivity of an adjusted query window, as
proposed in Ref. (18). In past research, the CD his-
togram was often regarded as discrete raster data to be
processed, as shown in Figure 1(b). In fact, every CD
histogram should have a continuous elevation surface
according to its generation algorithm. Therefore, the
value of each cell in Figure 1(b) is not the actual value
of the cell, but the value of the upper-right corner of the
cell. In such a fine continuous elevation surface, if the
histogram values of the four corners of a query window
can be obtained by an accurate interpolation algorithm,
the selectivity of the query window can be calculated
accurately by Equation (3).

SðQÞ ¼ Hllðxmax; ymaxÞ � Hlrðxmin; ymaxÞ � Hulðxmax; yminÞ
þ Hurðxmin; yminÞ

(3)

where (xmin, ymin) are the coordinates of the lower-left
corner of the query window, and (xmax, ymax) are the
coordinates of the upper-right corner of the query
window.

According to certain concepts of CD histograms,
the value of any point (x, y) in the histogram should be
the number of corresponding vertices that fall within the
region (0 0, x y). Taking Hll and point (2.7, 4.5) in
Figure 3 as an example, the value of Hll(2.7, 4.5) should
be the number of lower-left vertices that fall within the

Figure 1. CD histograms (a) and the estimation algorithm (b) (14).

Figure 2. Problem with the CD estimation algorithm (18).
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region(0 0, 2.7 4.5). If the region (0 0, 2.7 4.5) is
divided into two parts, part I and part II as indicated in
Figure 3, the value of Hll(2.7, 4.5) would be the sum of
the number of vertices falling within part I and part II,
respectively. The number of vertices in part I is known,
Hll 2:7b c; 4:5b cð Þ = 3. The number of vertices in part II,
however, is uncertain, but can be estimated by the num-
ber of vertices falling within every cell covered by part
II and its corresponding area ratio occupied by part II, as
given by the last three terms in Equation (4). Thus, the
value of any point (x, y) in the Hll histogram could be
interpolated by Equation (4). Equation (5) expresses how
to deduce the number of lower-left vertices falling within
Cll xd e; yd eð Þ, and can be accurately calculated according
to the cumulative concepts of the CD histogram.
According to Equations (4) and (5), Hll(2.7, 4.5) in
Figure 3 should be 3 + (4 − 3) × (2.7 − 2) + (5 − 3) ×
(4.5 − 4) + (6 − 5 − 4 + 3) × (2.7 − 2) × (4.5 − 4) = 4.7.
The other values of any point (x, y) in Hlr, Hul, or Hur

can be obtained by similar logic to that given in
Equations (4) and (5).

Cll xd e; yd eð Þ ¼ Hll xd e; yd eð Þ � Hll xd e � 1; yd eð Þ
� Hll xd e; yd e � 1ð Þ
þ Hll xd e � 1; yd e � 1ð Þ; (5)

where xb c and yb c are the floor of the x and y values,
respectively; xd e and yb c are the ceilings of the x and y
values, respectively; Cll xd e; yd eð Þ is the number of
lower-left vertices falling within Cell xd e; yd eð Þ.

3.2. Advantages and disadvantages of the proposed
method

The proposed method is more accurate than the two
probability model methods proposed in Ref. (18). The
accuracy of the method relies on the fact that the CD
histograms are taken to have smooth elevation surfaces,
rather than ladder-like surfaces. Moreover, in a smooth
histogram surface, the value of any point can be divided
into a very certain value corresponding to part I and
some uncertain values in part II of Figure 3. In the
method, every uncertain value is estimated by the num-
ber of vertices within its cells and the corresponding area
ratio occupied by part II. It is thus obvious that the
method maintains accuracy at every step without any
additional assumptions and information.

This method can be adapted to many types of vector
data and requires less storage than the GICD algorithm.
The method directly deduces a point’s distribution density
from the CD histogram rather than introducing some other
variable to record it. Thus, additional storage is unneces-
sary in this method. In addition, the method converts the
distribution density of spatial data into the distribution
density of some of the vertices. Furthermore, the concept
of the distribution density of some vertices is the same for
discrete polygon data, continuous polygon data, line data,
or point data. Conversely, iArea(i, j) in the GICD method
is a concept tied to polygon data, and is most useful for
small polygons with discrete distributions.

The time complexity of the proposed estimation
method is a little higher than the original CD estimation
method and the GCD method, but it is sometimes more
efficient than the GICD method. Since there is no loop
clause in the original CD method and the GCD method,
their complexities are almost O(1). The loop in the GICD
method is focused on accumulating the probability of the
area, as shown in Equation (2), and thus its complexity
should be O ð xmaxb c � xminb cÞ � ymaxb c � yminb cð Þ. How-
ever, the complexity of this method could be maintained
on a constant level according to the last part of Equation

(4). Therefore, its complexity is better than the GICD
algorithm.

4. Implementation of the selectivity estimation
algorithm

The CD histogram and the accurate estimation method
have been implemented and integrated into the

Figure 3. Example of how to estimate the value of point
(2.7, 4.5) in Hll histogram.

Hllðx;yÞ¼Hll xb c; yb cð ÞþP yb c
i¼1Cll xd e; ið Þ� x� xb cð ÞþP xb c

j¼1Cll j; yd eð Þ� y� yb cð ÞþCll xd e; yd eð Þ� x� xb cð Þ� y� yb cð Þ
¼Hll xb c; yb cð Þþ H xb cþ1; yb cð Þ�H xb c; yb cð Þð Þ� x� xb cð Þ
þ Hllð xb c; yb cþ1Þ�Hllð xb c; yb cÞð Þ� y� yb cð ÞþCll xd e; yd eð Þ� x� xb cð Þ� y� yb cð Þ;

(4)
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optimizer facility (OPF) module of INGRES. Previ-
ously, the OPF module gave a default selectivity ratio
(such as 50%) to all nodes without data statistics
including spatial prediction node. This implementation
improved the selectivity ratio of spatial prediction is
close to the real value.

Based on the INGRES object-relation extension
mechanism – object management extension (OME),
some related functions for spatial prediction cost estima-
tion have been developed. Before embarking on this
work, our team developed some spatial data types (i.e.,
ST_Geometry) and corresponding functions (i.e., ST_In-
tersect, ST_MBRIntersect, ST_GeomFromText) through
the user definition mechanism of the OME. Using this
framework, we coded some functions to manage a CD
histogram and to obtain the selectivity estimation.
ST_BldHist, ST_ExpHist and ST_DelHist were used to
build, export, and delete a certain CD histogram for a
spatial table, while ST_QESTHist was used to estimate
the selectivity in a certain query window. In addition, we
created a system catalog named IISTSTATISTICS to store
CD histograms built by ST_BldHist SQL function. The
SQL to create IISTSTATISTICS is given below.

Having developed these basic histogram functions,
we needed to find the correct place to add a switch, call-
back the ST_QESTHist function to estimate the spatial
selectivity in that switch, and input the selectivity into
the cost estimation module. The cost evaluation proce-
dure of a query plan proceeds from the bottom node to
the top node in a query plan tree. Therefore, we needed
to insert some code in the nodes’ cost evaluation module
and equate the estimated selectivity to the corresponding
input parameters of the cost evaluation module. In the
OPF module, oph_bfcost is the function to obtain the
selectivity of every node with bool factors. In query par-
ser PSF (Parser Facility), we determined and added some
masks to identify whether the prediction is spatial
related. Therefore, if the predictions are the right spatial
predictions, such as ST_intersect and ST_disjoint opera-
tor, cost-based optimizer find the related parameters from
query optimization global structure (subquery) and call-
back the ST_QESTHist function. Note that the selectivity
of ST_disjoint should be 1 minus the selectivity of the
corresponding ST_intersect operator, because they are
complementary. Thus, the selectivity returned by
ST_QESTHist will be equal to the bp- > opb_selectivity
variable of the corresponding bool factor in subquery,
which is a very important parameter in the cost evalua-
tion of the plan tree.

Having made the changes mentioned above, the CD
histogram and estimation method for the ST_Intersects
and ST_Disjoint operators could be implemented in the
OPF module of INGRES by the logic mentioned in
Section 3.

5. Experiments

Two experiments are described in this section. One con-
firms that the proposed method has high selectivity
estimation accuracy after comparing the estimation errors
from the five methods discussed in Sections 1–3. The
other shows that the accurate selectivity estimation
assists the OPF module in making the right decision in
selecting a query plan after comparing these spatial
query plans and their efficiency with a CD histogram.

5.1. Accuracy experiment

The test data for this experiment was land-use data of a
Chinese county on a 1:10,000 scale, stored in an
INGRES database. We randomly defined eight query
windows on the land-use data to test the accuracy of
their selectivity estimation. Figure 4 shows the land-use
data with eight query windows demarcated by the dotted
lines and appropriately labeled with numbers.

First, we used the ST_BldHist function to build CD
histograms with 20 rows and 20 columns. The corre-
sponding geographic structure query language (GSQL) is
given below.

CREAT TABLE IISTSTATISTICS
(SHTABBASE INT4 NOT

NULL,
// the internal identity
of a base table with
spatial histogram

SHTABINDEX INT4 NOT
NULL,

// the internal index
identity of the base
table

SHATTRNO INT4 NOT
NULL,

// the internal
identify of special
attribute with spatial
histogram

SHNULL FLOAT8, // whether spatial
histogram is NULL
or not

SHSAMPLE FLOAT8, // whether spatial
histogram is sample
or not

SHREDUNDANCY FLOAT8, // redundancy rate of
the spatial histogram

SHRANGE ST_GEOMETRY, // geometric extent
of the spatial data to
be built as histogram

GEODIMENSION INT4, // dimensions of
spatial data

CELLPARAM BLOB, // parameters to
describe histogram,
i.e. cell numbers in
each different
dimension

SHTYPE INT4, // type of histogram,
i.e. CD, Euler, or
others

CELLVALUES BLOB, // cell values of the
spatial histogram

SHVERSION CHAR(16)) // version info of the
spatial histogram

Geo-spatial Information Science 85
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SELECT ST_BldHist (‘INGRES’, ‘landuse’, ‘geometry’,
ST_GeomFromText (‘POLYGON((487898.531
253069.641, 531754.938 253069.641, 531754.938
296054.656, 487898.531 296054.656, 487898.531
253069.641))’), 1, ‘20, 20’, 0, 0).

Then, we used the ST_QESTHist function to obtain
the selectivity estimation value. Taking query window 4
as an example, the GSQL to obtain its estimation selec-
tivity is the following:

SELECT ST_QESTHist (‘INGRES’, ‘landuse’, ‘geome-
try’, st_GeomFromText (‘POLYGON((484695.007
277840.242, 498046.113 277840.242, 498046.113
287640.369, 484695.007 287640.369, 484695.007
277840.242))’, intersect, 32631)).

After obtaining the selectivity estimation values for
the eight query windows, we obtained the actual value
by executing the GSQL to find the geometry whose
MBR intersects the query window, rather than finding
the geometry that intersects the query window. The rea-
son for this is that the query optimizer tries to ensure
that the estimation value approximates the number of
candidate objects rather than the number of objects in
the final results, because the selectivity estimation
focuses mainly on the filtering step, and the I/O cost is
determined predominantly by the number of candidate
objects in the filtering step (8,9) rather than the number
of objects in the final results. Therefore, using query
window 4 as an example, the GSQL to obtain the actual
selectivity is the following:

SELECT Count (*) FROM landuse

WHERE landuse.geometry ST_MBRIntersects ST_
GeomFromText(‘POLYGON((484695.007 277840.242,
498046.113 277840.242, 498046.113 287640.369,
484695.007 287640.369, 484695.007 277840.242))’).

After obtaining the estimation and real selectivity of
the eight query windows, we used the relative error ratio
((Estimation value − Real value) / Real value) to indicate
the estimation accuracy.

To compare the accuracy of the proposed model with
the other four methods, we implemented the original
estimation method and the two methods by Chi et al.
(18,19), obtained the estimation values and actual values
of the eight query windows, and calculated their relative
error ratios in the same way. In addition, we also
repeated the same experiment in POSTGIS, where we
used the build_histogram2d and estimate_histogram2d
functions to build a spatial histogram and estimate its
selectivity. Figure 5 shows the relative estimation error
ratios of the five methods for the eight query windows
randomly defined in Figure 4.

5.2. Discussion about the accuracy

Figure 5 shows that the proposed method achieves the
best estimation accuracy of the five methods. On the
whole, the relative error ratio of this method is steady
and much less than 10%, which is the lowest of the five
methods. It is obvious that the relative error ratio of the

Figure 4. Land-use data and the eight query windows defined randomly.
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method in PostGIS is significantly higher than that of the
proposed method. In addition, the average error ratio of
the other three methods is also higher than the ratio of
the proposed method.

Statistic results of Chi et al’s methods show that the
GICD method is better than the GCD method for query
windows overlapping the boundary of the land-use data;
however, their selectivity estimations are often the same
on a query window within the boundary of the land-use
data. If the query window overlaps the boundary of
land-use data (i.e., windows 2 and 5), the iArea(i, j)
within the query window would have different values. In
this case, the iArea(i, j) would be work in the selectivity
estimation. However, if the query window overlaps the
boundary of land-use data (i.e., windows 7 and 8), all
the iArea(i, j) within the query window are 1. Therefore,
the selectivity estimations of the GCD and GICD method
are the same. This is discussed in the last paragraph of
Section 2.2.

In addition, we found that the selectivity estimation
error may be greater if the query window is very small,
because a smaller cardinal number results in a larger
relative error.

5.3. Experiment to investigate the effect of selecting a
query plan

This experiment investigates whether a cheaper query
plan is chosen after the selectivity estimation in Section 3
has been implemented in INGRES. To enlarge the enu-
meration space of the query plan, we downloaded the
Alaska data from the Quantum GIS website and chose
airports, trees, and builtups tables of Alaska to create a
more complex GQL. The airports table, as a point layer,
stored 76 airports in Alaska, the trees table, as a polygon
layer, stored 444 tree polygons, while the builtups table,
as a polygon layer, stored 18 built-up zones. We tried to
find some combination of name in airports, f_code in

trees, and name in builtups, which simultaneously satis-
fied the following conditions. First, the area of trees
should be less than 1000 km2, the airports should inter-
sect with a polygon described by the following GSQL
and the builtups’ name should not be “NOME.” Further-
more, the distance between trees and builtups and the
distance between airports and builtups should be less
than 50,000 and 40,000 m, respectively. The appropriate
GSQL is given below.

SELECT * FROM airports, trees, builtups

WHERE trees.area_km2 < 1000

AND airports.geometry ST_Intersects ST_GeomFrom-
Text(‘POLYGON((500000 3000000, 500000 5000000,
1500000 5000000, 1500000 3000000, 500000
3000000))’)

AND builtups.name < > ‘NOME’

AND ST_Distance(trees.geometry, builtups.geometry)
< 50000

AND ST_Distance(airports.geometry, builtups.geometry)
< 40000.

There are three bool factors in this query: two for the
attribute columns (i.e., trees.area_km2 < 1000 and
builtups.name < > ‘NOME’) and one for the geometry
column (i.e., airports.geometry ST_Intersect ST_Geom-
FromText(‘POLYGON((500000 3000000, 500000
5000000, 1500000 5000000, 1500000 3000000, 500000
3000000))’)). We use the Optimizedb command to build
two attribute histograms for the area_km2 column of the
trees table and the name column of the builtups table.
This will help the OPF module obtain the correct selec-
tivity of the two bool factors with attributes.

We executed the GSQL given above without a spatial
histogram. The INGRES DBMS chose a query plan tree

Figure 5. Relative estimation error ratios of the five methods on querying the test data in the eight query windows.
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as shown in Figure 6(a). First, it created a Descartes pro-
duction between the project restriction results of the trees
table and the project restriction results of the builtups
table. Then, it created a Descartes production between
the production results in the previous step and the pro-
ject restriction results of the airports table. After obtain-
ing the actual value of every query node by setting a
trace point as QE90, we found that the selectivity of the
two attribute columns, as illustrated by the two project
restriction nodes above the trees and builtups tables in
Figure 6(a), is almost the same as their actual values.
However, as the project restriction node above the air-
ports table shows, the spatial selectivity is 38, which is
the product of the tuples of the airport table (76) and the
default ratio (50%) given by INGRES. Obviously, it is
far deviated from the actual value of 11.

To repeat this query and produce statistics of the
execution times, we set trace points as DM421 before-
hand to prevent the second execution getting data
directly from the table already in the DMF (data manip-
ulation facility) cache. After setting the trace point, we
repeatedly executed that GSQL 10 times. The average
execution time and standard variance was 27,996.2 ms
and 0.08, respectively.

Thereafter, we used the ST_BldHist function to create
CD histograms with 20 columns and 20 rows for the air-
ports table. The corresponding GSQL is the following:

SELECT ST_BldHist (‘chengcx’, ‘airports’, ‘geometry’,
ST_GeomFromText (‘POLYGON((–4789817 976645
5471489 976645, 5471489 7564794, −4789817
7564794, −4789817 976645))’), 1, ‘20, 20’, 0, 0).

With the support of the spatial histogram, the
INGRES DBMS chose the query plan tree as shown in
Figure 6(b), which is different to that in Figure 6(a). It
first created a Descartes production between the project
restriction results of the airports table and the project
restriction results of the builtups table. Then, it created a

Descartes production between the production results in
the previous step and the project restriction results of
the trees table. It is obvious that the spatial selectivity in
the project restriction node above the airports table is
the same as the actual value 11.

We also set a trace point as DM421 and repeatedly
executed the GSQL 10 times in the same way. The aver-
age execution time and standard variance were
19,009.4 ms and 0.078, respectively. Thus, the execution
efficiency of INGRES improved significantly with the
use of the accuracy estimation.

5.4. Discussion about the effect

According to the experiment in Section 5.3, a cheaper
query plan is chosen with the support of CD histograms
and the accurate selectivity estimation. The important
difference between the two query plans lies in the selec-
tivity between the two dotted line rectangles. Without
the use of CD histograms, the selectivity was 38. How-
ever, with the support thereof, the tuples of the airports
table filtered by the intersect operator were estimated to
be 11, which is the same as the actual value. Accurate
selectivity, as an important parameter of the cost estima-
tion model, helps the OPF module choose the cheaper
plan tree in Figure 6(b), which ultimately saves the com-
putation time at almost 9000 ms (27,996.2–19,009.4 ms).

This method not only guarantees the selectivity
estimation accuracy of a leaf node with intersect or dis-
joint restriction in the query plan, but also the selectivity
estimation accuracy of the final result. Although a window
query is the most common and most basic operator in a
spatial database, it cannot be ignored that there may be
other operators in a spatial query, for example, the spatial
join operator based on the ST_Distance operator in the
Carte-Prod node of Figure 6. At present, the selectivity
estimation method of the ST_Distance-based spatial join
has not been implemented. Thus, its selectivity in Figure 6

Figure 6. Different query plans to be chosen under different situations.
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was estimated by the traditional Descartes production
estimation of INGRES. This is the reason that the tuples
in the final result may differ significantly from the actual
tuples.

6. Conclusions and future work

In this article, we propose an accurate selectivity estima-
tion for window queries based on CD histograms, and
implemented it in INGRES. This method can accurately
estimate the selectivity of arbitrary query windows with-
out additional storage. In addition, this method helps the
OPF module make the correct decision in choosing a
query plan, because it ensures that the query cost estima-
tion closely matches the actual execution situation. The
implementation makes a compact integration between the
DBMS and the spatial histogram.

This article only discusses the selectivity estimation
for window queries, which are the most common. How-
ever, there are various other spatial operations in a spa-
tial database. To ensure that the estimation cost of the
spatial query close resembles the actual situation, further
work needs to be done, such as, the selectivity estima-
tion about a spatial join. The spatial join is an important
basic operation in a multi-table spatial query. In addition,
it is also very important to estimate the selectivity of
finer topology predications. This article only imple-
mented the selectivity of intersect and disjoint predica-
tions. However, overlap, contain, within, and so on, may
also be commonly used in a complex spatial query.
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