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Abstract

Context A key goal of landscape ecology is to

understand landscape ecological processes across

space and through time, with reference to the central

organizing principles of nature. Towards this goal,

Boltzmann (or thermodynamic) entropy has been

widely used in a conceptual way to link these

processes to thermodynamic laws, but it has seldom

been computed because of a lack of feasible methods

since its formulation in 1872. This situation will

probably change because such methods have been

developed very recently.

Objectives To present a timely, comprehensive

review and an analysis of such methods.

Methods A systematic survey of the efforts to

compute the Boltzmann entropy of a landscape was

performed. The consistency of different computa-

tional methods was investigated.

Results In the review, two classes of methods were

identified. The methods were developed from distinct

ideas, apply to different landscape models (landscape

mosaics and gradients), and result in different Boltz-

mann entropies. Thus, a general method for both

landscape models would be desirable for consistent

thermodynamic interpretations. Towards this goal, an

approach was suggested to extend the method for

mosaics to gradients or vice versa. Possible strategies

for both extensions were theoretically analyzed and

experimentally tested. Problems of each extension

were revealed.

Conclusions These recently developed methods can

be regarded as first steps in the computation of

Boltzmann entropy for landscapes. This computation

still requires much attention. Future research is

recommended to improve the computation and to

apply Boltzmann entropy in the thermodynamic

understanding of landscape dynamics.

Keywords Boltzmann entropy � Thermodynamic

entropy � Computational method � Landscape mosaic �
Landscape gradient
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Introduction

The primary goal of landscape ecology is to under-

stand the interaction between landscapes and under-

lying ecological processes (Turner 1989; Gardner and

O’Neill 1991; Gillson 2009; Wu 2013). In this effort,

one fundamental issue is the characterization of

landscapes (Vogt et al. 2007; Riitters et al. 2009;

Costanza et al. 2011); thus, a series of metrics have

been employed (e.g., Riitters et al. 1995; Wickham

et al. 1997; McGarigal et al. 2009; O’Neill et al. 2010;

McGarigal et al. 2012; Gustafson 2018; Kedron et al.

in review; Nowosad and Stepinski in review). Among

these metrics, entropy is a fundamentally important

metric because of its thermodynamic basis, which

allows attractive potential interpretations of landscape

dynamics with reference to the central organizing

principles of nature.

According to a recent comprehensive review

(Vranken et al. 2015), entropy has been applied to

spatial, temporal, and spatio-temporal dimensions of

landscape ecological research, as interpretations of

spatial heterogeneity, the unpredictability of pattern

dynamics, and pattern scale dependence, respectively.

However, the following three observations made by

Vranken et al. (2015) soon received much attention

(e.g., Cushman 2015, 2016; Gao et al. 2017; Moffitt

2017; Gao et al. 2018b; Wang and Zhao 2018;

Cushman 2018a, b):

‘‘Thermodynamic interpretation of spatial hetero-

geneity is not considered relevant.

Thermodynamic interpretation related to scale

dependence is also questioned by complexity

theory.

Only unpredictability can be thermodynamically

relevant if appropriate measurements are used to test

it.’’ (Vranken et al. 2015, p. 51).

The reason behind these observations is the fact that

the entropy of a landscape is computed according to or

based on a model originating in communications

(Cushman 2015; Vranken et al. 2015), i.e., the entropy

proposed by Shannon (1948) and hence termed

Shannon entropy. Such an entropy was originally

used to quantify the information content of a telegram

message (Shannon and Weaver 1949; Gibson 2002)

and hence also termed information entropy. Although

many improvements have been made to Shannon

entropy to extend its applications (e.g., Li and Huang

2002; Claramunt 2005, 2012; Gao et al. 2018a), there

is still no confirmed relationship between Shannon

entropy and thermodynamics.

Instead of Shannon entropy, what should be used is

argued to be Boltzmann (1872) entropy, and calls have

recently been made to revisit it (e.g., Vranken et al.

2015; Cushman 2015, 2016; Sugihakim and Alatas

2016; Liang et al. 2018). Boltzmann entropy was

selected for two reasons. First, it is theoretically

capable of characterizing both the compositional and

configurational disorder of a system, whereas Shannon

entropy is capable of only one at a time. In this sense,

Boltzmann entropy is more suitable for landscape

characterization, where both composition and config-

uration matter. Second, Boltzmann entropy is the

thermodynamic entropy (Sears and Salinger 1975;

Atkins 1994; Kaufman 2002; Dalarsson et al. 2011),

which is a key to interpret landscape ecological

processes based on thermodynamic insights. Actually,

thermodynamic entropy has long been conceptually

used in landscape ecology for this purpose, such as

when an ecosystem is seen as a dissipative system

(e.g., Wu and Loucks 1995; Pelorosso et al. 2017) and

when energy flows are considered in studying land-

scape ecological processes (e.g., Naveh 1987; Chap-

man et al. 2015). However, no method was developed

for computing this entropy of a landscape until the last

three years.

This study aims to present a timely and compre-

hensive review of the efforts to compute the Boltz-

mann entropy of a landscape. An analysis of the

generalization of different computational methods

will be carried out both theoretically and

experimentally.

Boltzmann entropy and landscape models

Boltzmann entropy: concepts and difficulties in its

computation

Boltzmann entropy was proposed by and named after

the Austrian physicist Ludwig Boltzmann (1872). It is

a measure of the disorder of a thermodynamic system,

expressed through two notions, namely macrostate

and microstate. A macrostate is a macroscopic

description of the conditions of a thermodynamic

system, whereas a microstate is a description from a
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microscopic point of view. One macrostate may

correspond to a number of possible microstates, where

only one microstate is the thermodynamic system in

question. The number of possible microstates (W) can

be used to determine the value of Boltzmann entropy

(S) with the following equation (i.e., Boltzmann

equation):

S ¼ kB log Wð Þ ð1Þ

where kB is the Boltzmann constant

(¼ 1:38 � 10�23J/K).

This equation is hard to solve because of two

difficulties. One difficulty is the definition of the

macrostate of a system, and the other is the determi-

nation of the number of possible microstates. As noted

by Bailey (2009, p. 151), ‘‘researchers may not be

certain how to specify and measure the macrostate/

microstate relations.’’ These two difficulties hold for

landscapes. As observed by Vranken et al. (2015,

p. 61), ‘‘no (thermodynamic) entropy quantification

methods have been proposed’’ for landscapes. As a

result, the use of Boltzmann entropy has long been

limited to a conceptual level in landscape ecology.

Two models for representing a landscape: mosaic

and gradient

In landscape ecology, there are two models for

representing a landscape, namely mosaic (Forman

1995) and gradient (McGarigal and Cushman 2005).

By a mosaic (or patch-mosaic) model, a landscape

is represented as a mosaic of discrete patches (i.e., a

group of adjacent cells of the same cover class;

Pearson and Gardner 1997) and thus is referred to as a

landscape mosaic. A typical example is a land

cover/land use map. This model is the traditional

paradigm of landscape ecological research.

By a gradient model, a landscape is represented as a

grid of quantitative attributes, which led to the term

landscape gradient. Examples include a digital eleva-

tion model (DEM) and a remote sensing image. This

model is regarded as being more general than the

mosaic model because it subsumes the latter as a

special case (McGarigal and Cushman 2005).

Because of these two models, efforts to develop

computational methods for Boltzmann entropy have

been made in two directions, i.e., computations with

landscape mosaics and with landscape gradients. The

remainder of this review will be organized

accordingly.

Boltzmann entropy for landscape mosaics

Initial idea: to count the exact number

of microstates in a macrostate by the total edge

The pioneering work on computing the Boltzmann

entropy (also referred to as configurational entropy by

Cushman) of a landscape mosaic was carried out by

Cushman (2016), who provided insightful thoughts on

the computation through two experiments. The first

experiment is a thought experiment, and the other is a

computer simulation.

In the thought experiment, the macrostate of a

landscape mosaic was specified using three variables

of cell composition, namely the dimensions (D) of a

landscape mosaic, the number (N) of the cover classes

of cells, and the proportions (P) of each cover class.

For example, the macrostate specified for the land-

scape mosaic shown in Fig. 1 is as follows: D = 393,

N = 2, and P = {4/9, 5/9}. Then, the microstates were

specified as cell configurations. In this case, one can

imagine that any two landscape mosaics with the same

cell composition (i.e., D, N, and P) will have the same

number of possible microstates and thus the same

Boltzmann entropy. In other words, the Boltzmann

entropy computed in this way has the same perfor-

mance as Shannon entropy: both are irrelevant to cell

configuration.

In the second experiment, all the possible landscape

mosaics were first simulated under the constraints that

D = 3 9 3, N = 2, and P = {4/9, 5/9}. This means

that all the simulated landscape mosaics (see some

examples in Fig. 2) share the same cell composition

and thus the same Shannon entropy. Then, the

landscape metric total edge (TE) was computed with

each simulated landscape mosaic, as shown in Fig. 3.

Fig. 1 Dimensions, number of cover classes, and proportions

of each class of a landscape mosaic
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It can be found from this figure that the number of

simulated landscape mosaics changes with TE.

Based on the findings of the two experiments,

Cushman (2016) developed the first-ever idea of

computing the Boltzmann entropy of a landscape

mosaic. That is, the macrostate was defined as the TE

of a landscape mosaic, and the number of possible

microstates was specified as the number of possible

cell configurations that could be generated with the

same cell composition (i.e.,D, N, and P) and TE as the

original, as shown in Fig. 4.

Implementation: relative entropy based

on the estimated proportion of microstates

A key step in implementing the preceding idea is to

find all the possible landscape mosaics that have the

same D, N, and P as the original landscape mosaic.

This task is hardly practical with a large D because of

the considerable number of possibilities. For example,

the number of possible landscapemosaics is as large as

1.03 9 10119, even if D is only 20 9 20 (N = 2 and

P = {50%, 50%}), and it increases dramatically with

D. Therefore, this task has become the ‘‘fundamental

challenge’’ (Cushman 2016, p. 486) in

implementation.

To avoid this challenge, Cushman (2018a) pro-

posed an alternative route with which to compute the

Boltzmann entropy of a landscape mosaic. The route

involves three steps.

1. Since it is impractical to find all the possible

landscape mosaics (i.e., the population), he pro-

posed generating a sample of the possible land-

scape mosaics instead. This generation was

performed by randomizing the cell configuration

of an original landscape mosaic a large number of

times, for example, 100,000 as by Cushman

(2018a).

2. Instead of counting the number (NTE) of possible

landscape mosaics with a given TE in the popu-

lation, the proportion (P0
TE) of the possible land-

scape mosaics with the given TE in the sample was

computed. P0
TE was regarded as an estimate of the

proportion (PTE) of such possible landscape

mosaics in the population.

Fig. 2 Mosaics with the

same dimensions, number of

classes, and proportions as

that in Fig. 1

Fig. 3 Total edge and the corresponding number of simulated

landscapes

Fig. 4 Macrostate, possible

cell configurations, and

possible microstates of a

landscape mosaic
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3. Instead of NTE;P
0
TE was substituted for the W in

Eq. (1). The result, as shown in Eq. (2), is called

relative entropy because it is relative to sample

size.

S0 ¼ kB logðP0
TEÞ ð2Þ

It is worth noting that P0
TE may equal zero if the

sample size is not large enough. Let us take the

landscape mosaic in Fig. 5 as an example. It is a

16 9 16 multifractal map created using QRULE

(Gardner 1999; Gardner and Urban 2007), and its TE

equals 156. This original landscape mosaic was

randomized 10,000 times in this study. However,

none of the randomized landscape mosaic had a TE of

156, meaning that PTE

0
= 0.

To solve this problem, Cushman (2018a) proposed

to estimate PTE

0
as follows:

P̂0
TE ¼ 1

ffiffiffiffiffiffiffiffi

2pr
p e

�ðte�lÞ2

2r2 ð3Þ

where l and r are the mean and the standard deviation

of the (TE)s of all randomized landscape mosaics,

respectively; and te is the TE of the original landscape

mosaic. The justification for this estimation is his

demonstration that (TE)s of all the randomized

landscape mosaics for any landscape mosaic follow

a normal distribution.

In summary, the alternative route to computing the

Boltzmann entropy of a landscape mosaic is to

compute the relative entropy by estimating the

proportion of microstates based on the normal distri-

bution of the (TE)s of randomized landscape mosaics,

that is,

Ŝ0 ¼ kB log
1
ffiffiffiffiffiffiffiffi

2pr
p e

�ðte�lÞ2

2r2

� �

ð4Þ

Note that the determination of l and r still requires

a large amount of computation, specifically, 100,000

(or even more) randomizations of an original land-

scape mosaic and the same number of computations of

the landscape metric TE. Therefore, to improve

efficiency, Cushman (2018a) suggested an estimation

of l and r and even a prediction of Ŝ0. These attempts

have not been thoroughly evaluated and can be found

in the Appendix.

Boltzmann entropy for landscape gradients

The method for computing the Boltzmann entropy of a

landscape gradient was originally proposed by Gao

et al. (2017). It was then improved by Gao et al.

(2018b) and Nowosad (2018).

Basic idea: macro- and microstate as different

levels in a hierarchy

A landscape gradient can be transformed into a

hierarchy that contains a series of landscape gradients

with different levels of detail (Fig. 6). The relationship

between two levels in such a hierarchy is similar to

that between the macro- and microstate of a system.

Inspired by such a line of thought, Gao et al. (2017)

adopted a hierarchical perspective to define the

macrostate of a landscape mosaic and to determine

the number of possible microstates.

The idea for defining the macrostate is to select one

level from the hierarchy of a landscape gradient as the

macrostate. To set the criteria for this selection, Gao

et al. (2017) revisited an example that is widely used in

thermodynamics to illustrate Boltzmann entropy

computation (e.g., Gould and Tobochnik 2010),

namely a container filled with four gas molecules.

By analyzing the successful definition of the macro-

state in that example, Gao et al. (2017) established two

rules for defining a good macrostate, as follows:

1. The macrostate should be general enough that it

portrays the categorical states of the particles in a

thermodynamic system.

2. The macrostate should be specific enough that it is

capable of distinguishing two thermodynamic

systems.

According to Rule 1, each hierarchical level can serve

as the macrostate of a landscape gradient. If Rule 2 is

also applied, the best candidate level will be the one

that is most similar to the original landscape gradient.

Therefore, the macrostate was defined as follows: an

upscaled landscape gradient created by applying aFig. 5 Landscape mosaic created using the QRULE program
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2 9 2-cell moving average filter to the original

landscape gradient (every four cells fall into the filter

were referred to as original cells by Gao et al. 2018b).

The idea for determining the number of microstates

is to count how many possibilities there are to

downscale the macrostate to the original resolution.

However, the possibilities appear endless, as shown in

Fig. 7, so some constraints are needed. Thus, three

principles were introduced for the downscaling, as

follows:

1. Maximum preserved: a microstate has the same

maximum as the macrostate.

2. Minimum preserved: a microstate has the same

minimum as the macrostate.

3. Average (sum) preserved: a microstate has the

same sum as the macrostate.

As a result, the number of possibilities became limited.

This number varies with the landscape gradient,

resulting in different Boltzmann entropies, as shown

in Fig. 8.

Careful readers may have noticed that all the input

(original landscape gradient) and output (microstates)

of Figs. 7 and 8 have integer values. This is actually an

important assumption of Gao et al. (2017). In dealing

with a landscape gradient of non-integer values, one

should convert these values into integer ones. Such a

conversion, however, could be an issue when the range

of these non-integer values is small, e.g., 1.124–1.363.

Implementation: relative and absolute Boltzmann

entropies

An immediate question is how to downscale the

macrostate of a landscape gradient that has larger

dimensions than those illustrated in Fig. 8 (i.e., has

more than 2 9 2 cells). The answer depends on the

understanding of a landscape gradient.

According to McGarigal and Cushman (2005), a

landscape gradient is ‘‘a continuous surface or several

surfaces corresponding to different environmental

attributes’’ (p. 115). To model a landscape as a surface

or several surfaces, three approaches are available (Li

et al. 2004), namely point-based, triangle-based, and

grid-based modeling. Gao et al. (2017) understood a

landscape gradient to be a series of surfaces created

using grid-based modeling. Accordingly, the down-

scaling of the macrostate of a large landscape gradient

was performed as the downscaling (referred to as

decomposition by Gao et al. 2018b) of every cell (i.e.,

aggregated cell) of the macrostate to four cells

(decomposed cells). Since these decompositions are

mutually independent, the number of microstates can

be computed as the product of the numbers of the

Fig. 6 A landscape represented with different levels of detail

Fig. 7 Endless possibilities

when downscaling the

macrostate of a landscape

without constraints
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possible outcomes of each decomposition. The resul-

tant entropy with this number of microstates is referred

to as relative (Boltzmann) entropy (SR) because it

characterizes the uncertainty of downscaling from the

macrostate of a landscape gradient to its original

resolution. In other words, this entropy is relative to a

macrostate, which is only one level in the hierarchy of

a landscape gradient.

One can imagine that a relative entropy can be

computed for each hierarchical level. The sum of all

these relative entropies is termed absolute (Boltz-

mann) entropy (SA). It characterizes the uncertainty of

downscaling from the most abstract level (i.e., a single

cell) in the hierarchy of a landscape gradient to the

most detailed level (i.e., the original landscape gradi-

ent), as previously illustrated by Gao et al. (2017) in

their Fig. 9.

The relationship between relative and absolute

entropies can be compared to that between relative and

absolute heights. Only the comparison in absolute

entropy between two landscape gradients of different

dimensions seems meaningful because the absolute

entropy is in reference to zero entropy (i.e., a single

cell). According to the experiments by Gao et al.

(2017), absolute entropy is capable of characterizing

both the composition and configuration of a landscape

in a sensitive manner.

Improvements: efficiency and border effect

There are two improvements to the computational

method for a landscape gradient. One is to improve the

efficiency (Gao et al. 2018b), and the other is to avoid

the potential effect of the border of a landscape

gradient (Nowosad 2018).

After implementing their basic idea, Gao et al.

(2018b) found it inefficient in computing a Boltzmann

entropy, especially its absolute value (i.e., SA). This

inefficiency is caused by so-called decomposition

tasks, which are performed in a numerical way (i.e., by

enumerating all possibilities) and, more seriously, are

of an extremely large number when dealing with large

landscape gradients (because each cell in a hierarchy is

to be decomposed).

Two efforts were made towards the efficiency

problem by Gao et al. (2018b). First, an analytical

solution was developed to compute the number (i.e.,

M) of possible outcomes of a decomposition, as shown

in Eq. (5). Second, a parallelization strategy was

developed to perform the decomposition of the cells at

different hierarchical levels in parallel.

Fig. 8 Macrostates, microstates, and Boltzmann entropies (S) of two landscape gradients
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M ¼

1 d ¼ 0; da ¼ db; xa ¼ xb

6 d ¼ 0; da ¼ db; xa 6¼ xb

4 d ¼ 0; da 6¼ db; xa ¼ xb

12 d ¼ 0; da 6¼ db; xa 6¼ xb

24ðd � 1Þ þ 18 d 6¼ 0; da ¼ db; xa ¼ xb

24ðd � 1Þ þ 30 d 6¼ 0; da ¼ db; xa 6¼ xb

24ðd � 1Þ þ 24 d 6¼ 0; da 6¼ db; xa ¼ xb

24ðd � 1Þ þ 36 d 6¼ 0; da 6¼ db; xa 6¼ xb
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ð5Þ

where max, min, and s are the maximum, minimum,

and sum of the values of four original cells, respec-

tively; bc and de round a value down to and up to its

nearest integer, respectively; and MINðÞ returns the

minimum from a group of numbers.

The experimental results by Gao et al. (2018b)

showed that with this parallel analytical method, the

computation of Boltzmann entropy could be per-

formed in near real-time on an ordinary computer.

Related software tools have been made publicly

available by Nowosad (2018) and Gao et al. (2018b).

The second improvement is to avoid the border

effect of a landscape gradient. Sometimes the bound-

ary of the landscape of interest is not regular, such as a

map of census block groups (e.g., Buyantuyev andWu

2010), the nighttime light distribution in a city (e.g.,

Wu et al. 2018), and the land cover of a mountain (e.g.,

Wickham et al. 2013). When such a landscape is

modeled as a regular landscape gradient, some cells of

the landscape gradient may have a null value, making

the computational method of Boltzmann entropy

inapplicable. To solve this problem, Nowosad (2018)

specified how to perform upscaling and downscaling

with null-value cells. The specification can be sum-

marized as the following two rules:

In upscaling, the average is computed as the mean of

non-null values, and

In downscaling, the number and positions of null-

value cells are preserved.

Some applications of these rules are shown in

Fig. 9.

Generalization of mosaic- and gradient-based

entropies

We now have two classes of methods for computing

the Boltzmann entropy of a landscape. One applies

only to landscape mosaics, resulting in a mosaic-based

Fig. 9 Upscaling and

downscaling with null-value

cells (denoted by ‘‘N’’)
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Boltzmann entropy. The other is only applicable to

landscape gradients, leading to a gradient-based

Boltzmann entropy. It would be desirable to have a

general computational method that applies to both

landscape mosaics and gradients. One approach

towards this goal is to extend the existing methods,

either from landscape mosaics to gradients or vice

versa.

There are at least three possible strategies to extend

the method for landscape mosaics to gradients. The

first strategy is to incorporate a data preprocessing

component into the method. When the input is a

landscape gradient, its cells can be categorized into a

small number of cover classes of interest before

computing the Boltzmann entropy. However, the

shortcoming of this strategy is that some information

of the landscape will be lost after categorization. The

second strategy is to simply treat gradient cells of

different quantitative values as mosaic cells of differ-

ent cover classes. This strategy seems promising,

although it can result in numerous cover classes. For

example, when dealing with a DEM of a mountain,

there might be thousands of ‘‘cover classes’’ because

the elevation may have a large range. The third

possible strategy has been suggested by Cushman

(2018a): instead of using the TE as a macrostate, one

can employ the sum of the value differences between

every cell and its eight neighbors when dealing with a

landscape gradient. This strategy is theoretically

attractive, but it would face the same challenge as

using the TE as a macrostate: it would be impractical

to count the exact number of possible microstates.

In this study, the second strategy was implemented

to extend the method for landscape mosaics to

gradients. Then, the extended method was tested using

the same experimental data for testing the original

method for landscape gradients (Gao et al. 2017),

specifically, four pairs of DEMs in which the first is

more disorderly than the second, as shown in Fig. 10.

The Ŝ
0
of each DEM was computed with the extended

method. In the computation of Ŝ
0
, every DEM was

randomized 100,000 times (which was used by

Cushman 2018a). Since this number of randomiza-

tions may affect the value of Ŝ
0
, we also set the number

to 200,000 and 500,000 to investigate its effect.

Therefore, for each DEM, we obtained three values of

Ŝ
0
. However, all three values of each DEM were

kB log 0 (details in Table 1). This fact demonstrates

that the extension strategy is not effective. In addition,

it reveals that the number of randomizations has little

Fig. 10 Four pairs of digital elevations models (DEMs)
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effect. Since the strategy does not change the idea of

the original method, the fact also suggests that the

original method can be further improved when dealing

with a landscape mosaic containing a very large

number of cover classes.

To extend the method for landscape gradients to

mosaics, one may adopt the following strategy. For a

landscape mosaic of only 2� 2 cells, the macrostate

can be defined as the number of cover classes and their

proportions. Then, the number of microstates is

computed as the number of possible spatial configu-

rations given the same number of cover classes and

their proportions. For the other landscape mosaics, the

definition of macrostate and the determination of the

number of microstates can be performed in a similar

way as the original method for landscape gradients,

namely by applying a 2� 2 cell moving filter.

This strategy was implemented in this study and

tested on landscape mosaics. The test data were the

same as those used to test the original method for

landscape mosaics (Cushman 2018a), specifically, the

12 landscape mosaics as shown in Fig. 11. The

Table 1 Boltzmann

entropies (Ŝ
0
, computed by

extending the method for

mosaic) of DEM in Fig. 10

‘‘100 k’’, ‘‘200 k’’, and

‘‘300 k’’ denote that the

number of randomizations

is 100,000, 200,000, and

300,000, respectively. Ŝ
0

here is found to be

independent of this number

DEM Total edge l of Eq. (4) r of Eq. (4) Ŝ
0

100 k 200 k 300 k 100 k 200 k 300 k

a1 674,718 717,560 717,560 717,560 140 102 70 kB log 0

a2 666,204 717,084 717,084 717,084 166 121 83 kB log 0

b1 669,318 716,749 716,750 716,750 157 115 81 kB log 0

b2 571,666 715,529 715,530 715,530 458 327 211 kB log 0

c1 615,829 712,464 712,465 712,465 316 230 158 kB log 0

c2 537,000 715,361 715,362 715,362 567 403 259 kB log 0

d1 703,858 717,775 717,775 717,775 54 45 38 kB log 0

d2 669,871 716,516 716,517 716,517 155 115 81 kB log 0

Fig. 11 Simulated landscape mosaics by Cushman (2018a) and their total edges (TEs)

Table 2 Relative

Boltzmann entropies

computed for the 12

mosaics in Fig. 11 by

extending Gao et al. (2017)

method and by Cushman

(2018a), denoted by SR and

S0, respectively

The Boltzmann constant

and logarithmic base were

set to 1 and e, respectively

Mosaic SR S0

a 52 - 167

b 67 - 153

c 71 - 148

d 80 - 137

e 97 - 123

f 106 - 112

g 118 - 96

h 138 - 77

i 150 - 67

j 165 - 47

k 316 - 4

l 403 - 250
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mosaics were ranked from the most aggregated (i.e.,

maximum homogeneity) to the most dispersed (i.e.,

maximum heterogeneity) in this study, according to

their description by Cushman (2018a). The SR of each

mosaic is shown in Table 2, along with the Boltzmann

entropy (S0) computed by Cushman (2018a). From this

table, the following observations can be made:

• Both SR and S0 characterized the disorder as

increasing from Mosaic (a) to (k).

• The value of SR indicated that Mosaic (l) was the

most disorderly among the 12 mosaics, whereas

that of S0 showed that Mosaic (l) was the most

orderly.

Discussion: checkerboard as most orderly

or disorderly?

Should the checkerboard pattern (i.e., Mosaic l) be the

most orderly (thus should have the lowest entropy) or

disorderly (so have the highest entropy)? To try to

answer this question, let us go back to

thermodynamics.

The second law of thermodynamics tells us that

‘‘the entropy of a closed system increases continuously

and irrevocably toward a maximum’’ (Huettner 1976,

p. 102). A widely used illustration of this law is the

mixing of two ideal gases. Such illustration can be

found in most thermodynamic textbooks (e.g., Roy

2002; Gould and Tobochnik 2010). As shown in

Fig. 12, there are two ideal gases initially separated by

a partition in a closed container. Then, the partition is

removed to allow their mixing. As a result, the entropy

of the whole system increases until the two gases are

fully mixed. Since the entropy of a closed system ‘‘can

never decrease’’ (Bekenstein 2003, p. 61), entropy is

sometimes called ‘‘an arrow of time’’ or ‘‘time’s

arrow’’ (Lebowitz 1993). It can be used to distinguish

the past from the future, following the principle that

the past state has a lower entropy.

In a sense, the 12 mosaics of Fig. 11 can be

regarded as different states of the mixing of two ideal

gases (i.e., the black and the gray mosaic cells) in a

closed container, as they have the same dimensions,

number of classes, and proportions of classes. Since all

12 states are observable in the mixing (given enough

time), how would one expect them to be ordered based

on the time at which they can be observed? According

to S0, Mosaic (l) has a smaller entropy than (a),

meaning that (l) comes earlier than (a). However, for a

closed system where the entire process is spontaneous,

such inference seems somewhat improbable. The

dispersed gas molecules in a state of (l) have little

chance of aggregating spontaneously to a state such as

that of (a). By contrast, according to SR, the time order

of the 12 mosaics is from (a) to (l). In this case, (l) can

be regarded as a theoretical state in which two gases

are fully mixed. If the pattern of (l) is slightly changed

to, say, the states shown in Fig. 13, SR will be only

slightly lower. This means that these states are very

close to the theoretically fully mixed state.

Therefore, we argue that Mosaic (l) is not the most

orderly among the 12 mosaics. In contrast, it is the

most disorderly state in thermodynamic terms. In

Fig. 12 Mixing of two ideal gases in a closed container

Fig. 13 Two mosaics that are similar to Fig. 11 (l) and their

(SR)s
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addition, Mosaic (k) should not have the highest

entropy. It does, however, according to S0. This

discrepancy might be caused by the macrostate

definition of S0, namely the TE. With this definition,

two significantly different microstates are assigned to

the same macrostate, as shown in Fig. 14. Since S0

exhibits a parabolic trend when a thermodynamic

system evolves from disequilibrium (e.g., the initial

state of mixing) to equilibrium (e.g., the finial state of

mixing), the characterization of S0 might be the

‘‘complexity’’ of a thermodynamic system (Lopez-

Ruiz et al. 1995), which has a behavior similar to that

as shown in Fig. 15.

Concluding remarks

The potential fundamental importance of Boltzmann

(or thermodynamic) entropy has been long and widely

recognized in landscape ecology (e.g., Forman and

Godron 1986; Naveh 1987; O’Neill et al. 1989; Wu

and Loucks 1995; Zhang and Wu 2002; Cushman

2018b). Its use, however, remained at only a concep-

tual level. It was not until very recently that compu-

tational methods were developed for the Boltzmann

entropy of a landscape.

This paper presented a timely and comprehensive

review of these computational methods. It was found

that two classes of methods have been developed: one

applies only to landscape mosaics, and the other only

to landscape gradients. However, a general method

might be desirable for a model-independent thermo-

dynamic understanding of landscape dynamics based

on Boltzmann entropy. Accordingly, an analysis of

possible generalizations of these methods was per-

formed both theoretically and experimentally. This

review concludes that the computation of the Boltz-

mann entropy of a landscape still requires attention

and improvement, although some methods have been

developed.

Future research is recommended in the following

two areas. The first is to develop a general computa-

tional method of Boltzmann entropy. The second is to

try to incorporate Boltzmann entropy into the ther-

modynamic understanding of landscape dynamics.

Landscapes are widely understood as open systems or,

more precisely, dissipative structures (Prigogine 1967;

Prigogine et al. 1972) in terms of far-from-equilibrium

thermodynamics. To quantify the entropy production

resulting from irreversible processes inside the open

system, Boltzmann entropy is a promising but poorly

explored metric.
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