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Abstract: Spatiotemporal fusion is considered a feasible and cost-effective way to solve the trade-off

between the spatial and temporal resolution of satellite sensors. Recently proposed learning-based
spatiotemporal fusion methods can address the prediction of both phenological and land-cover
change. In this paper, we propose a novel deep learning-based spatiotemporal data fusion
method that uses a two-stream convolutional neural network. The method combines both forward
and backward prediction to generate a target fine image, where temporal change-based and a
spatial information-based mapping are simultaneously formed, addressing the prediction of both
phenological and land-cover changes with better generalization ability and robustness. Comparative
experimental results for the test datasets with phenological and land-cover changes verified the
effectiveness of our method. Compared to existing learning-based spatiotemporal fusion methods,
our method is more effective in predicting phenological change and directly reconstructing the
prediction with complete spatial details without the need for auxiliary modulation.

Keywords: spatiotemporal fusion; convolutional neural network; nonlinear mapping; temporal
change information; spatial detail

1. Introduction

Satellites with high temporal and spatial resolution are capable of capturing dynamics at a
fine scale, obtaining dense remotely sensed time-series data that play an important role in studying
the dynamics of earth systems, such as monitoring vegetation phenology [1], detecting land-cover
changes [2], discriminating different land-cover types [3], and modeling carbon sequestration [4].
With the increase in the number of available satellite images, studies using dense time-series data
have become extremely popular in this decade. However, a trade-off between the spatial and the
temporal resolution of satellite sensors still exists due to limitations of the technology and budget
constraints [5]. Spatiotemporal fusion methods, which combine different sensors, are considered a
feasible and cost-effective way to solve this problem [6,7]. Specifically, spatiotemporal fusion methods
combine high spatial and temporal resolution images to generate fused images under the condition
that the two kinds of sensors have similar spectral properties.
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In the past decade, various spatiotemporal fusion methods have been proposed. Among them,
linear fusion methods are the most widely used type, and these are based on two hypotheses: (1) the
relationship between the reflectance of fine (images with high spatial resolution but low temporal
resolution) and coarse (images with low spatial resolution but high temporal resolution) images is
linear; and (2) the temporal change between the reflectance of two coarse images is linear within a
short period.

For the first hypothesis, the predicted images are obtained by applying this linear relationship
between coarse and fine images to the coarse image at the prediction date. The Spatial and Temporal
Adaptive Reflectance Fusion Model (STARFM) [5] is one of the earliest and most widely used linear
spatiotemporal fusion methods, which is based on the premise that the reflectance of fine images is
equal to the sum of the reflectance of a coarse image and a modulation term, representing the reflectance
difference between the coarse and fine images. STARFM assumes that the modulation term is consistent;
however, reflectance changes for pure pixels are supposed to be consistent between coarse and fine
images, which is not applicable in heterogeneous areas [7,8]. To improve the fusion performance of
STARFM in heterogeneous areas dominated by mixed pixels, an enhanced STARFM (ESTARFM) [8]
method has been proposed, introducing a conversion coefficient to measure the temporal change rate
of each class separately [9]. To apply the linear spatiotemporal fusion method to land-cover change,
the Rigorously-Weighted Spatiotemporal Fusion Model with uncertainty analysis (RWSTFM) [10]
uses linear regression to express the relationship between the reflectance of fine and coarse images
and relax the assumption that the regression coefficient is consistent at different dates. In this model,
the coefficient is updated using a correction factor.

For the second hypothesis, the predicted image is obtained by applying the linear relationship
modeling the temporal change of two known coarse images to the known fine image. The Spatial
and Temporal Non-Local Filter-based Fusion Model (STNLFFM) developed by Cheng et al. [11] is a
typical example of this kind of method. First, given two coarse images acquired at different times,
linear regression is utilized to express the temporal change, followed by obtaining the regression
coefficients using the least squares method on neighboring pixels. Then, the coefficients are applied to
the known fine image to obtain the prediction. To further decrease the effects of blocky artifacts caused
by significant differences in the spatial resolution of the fine and coarse images, the method used
similar pixels to formulate a non-local filter. Fit_FC, developed by Wang and Atkinson [12], employed a
similar theoretical assumption as STNLFFM; the advantage of Fit_FC lies in the residual compensation
for the further decrease of the uncertainty, which was generated during the linear regression of the two
given coarse images. The Hybrid Color Mapping approach (HCM), developed by Chiman Kwan [13],
also utilized the linear mapping between two known coarse images to express the temporal change
information. However, different from the above two methods, the mapping extracted by HCM is based
on the patches, instead of using the neighboring pixels. The Enhanced Linear Spatiotemporal Fusion
Method (ELSTFM), proposed by Bo [14], replaced the linear regression coefficients with the residual
term, which was obtained by spectral unmixing to obtain a more accurate prediction.

Due to its relatively simple implementation, linear spatiotemporal fusion methods have been
utilized in various applications, such as land-cover classification [15,16], wetland monitoring [17], land
surface temperature monitoring [18,19], leaf area index monitoring [20,21], and evapotranspiration
monitoring [22,23]. However, this type of method has some major limitations: (1) linear theoretical
assumptions are implausible in the case of land-cover change, resulting in poor fusion performance
in land-cover change prediction; and (2) the effectiveness of linear spatiotemporal fusion methods
depends on the selection of the weighting function, which is empirical with limited generalization [24].

Recently, proposed learning-based methods are no longer limited by the two linearity assumptions
and can handle predictions of both phenological and land-cover change [25]. Therefore, these
methods are expected to achieve better fusion performance, especially for land-cover change
prediction [24]. The core of these methods is the formulation of the nonlinear mapping between
the given pair of fine and coarse images based on their spatial structural similarity. The target



Remote Sens. 2020, 12, 698 3 of 26

fine images are generated by employing the learned nonlinear mapping to the corresponding
coarse image [26]. Dictionary pair-based methods are representative learning-based methods, which
introduced non-local similarities and non-analytic optimization in the sparse domain to predict the
fine image. The Sparse-representation-based Spatiotemporal Reflectance Fusion model (SPSTFM) [26],
developed by Huang, is an initial example of dictionary pair-based methods, which formulated
the nonlinear mapping between the fine and coarse image by jointly training two dictionaries from
fine and coarse image patches. Then, the one-pair learning method was further developed to apply
the SPSTFM method to the case of one known pair of fine and coarse images [27]. Since SPSTFM’s
assumption that the sparse coefficients across the fine and coarse image patches are the same is too strict,
subsequent studies have been devoted to relaxing this assumption, such as the error-bound-regularized
sparse coding (EBSPTM) [28], block Sparse Bayesian Learning for Semi-Coupled Dictionary Learning
(bSBL-SCDL) [29], and compressed sensing for spatiotemporal fusion (CSSF) [30]. Although these
dictionary pair-based methods can predict both the phenological and land-cover changes, the high
computational complexity of sparse coding limits their applicability. To reduce this complexity,
the extreme learning machine (ELM), a fast single hidden layer feed-forward neural network, was
utilized to learn the nonlinear mapping between the fine and coarse images [31]. Motivated by the
advantages of deep nonlinear mapping learning, some relevant spatiotemporal fusion methods have
been proposed [32,33]. The Deep Convolutional Spatiotemporal Fusion Network (DCSTFN) [32] used
a convolutional neural network (CNN) to extract the main frame and background information from
the fine image and the high-frequency components from coarse images. Then, using the hypothesis
equation from STARFM, two types of extracted features are merged to generate the final prediction.
Although DCSTFN outperforms conventional spatiotemporal fusion methods in generalization ability
and robustness, since the method is still based on the linearity assumption, its ability to handle
predictions with land-cover change is limited.

Recently, Song et al. [33] devised a multi-step spatiotemporal fusion framework with Deep
Convolutional Neural Networks (STFDCNN), in which an effective deep learning-based single
image super-resolution method (SRCNN) was utilized to form the nonlinear mapping and apply
super-resolution in sequence. Although the method can achieve reasonable fusion performance, both
the nonlinearity mapping and super-resolution step based on the SRCNN fail to reconstruct the spatial
details of the predictions, as they are dependent on an additional high-pass modulation. Additionally,
the method focused on formulating the nonlinear mapping, whereas no physical temporal change
information was taken into account.

In light of the above limitations, we propose a novel deep learning-based spatiotemporal data
fusion method (DL-SDFM) using a two-stream convolutional neural network. The main advantages of
DL-SDFM include the following:

• DL-SDFM addresses the prediction of both phenological and land-cover changes with high
generalization ability and robustness.

• DL-SDFM enriches the learning-based spatiotemporal fusion method with temporal change
information, resulting in a more robust ability of predicting the phenological change compared to
the existing learning-based spatiotemporal fusion methods.

• DL-SDFM can directly reconstruct the prediction with complete spatial details without the need
for auxiliary modulation.

2. Methods

We refer to images with low spatial resolution but high temporal resolution as “coarse” images,
while images with high spatial resolution but low temporal resolution are called the “fine” images.
In this paper, we consider both forward and backward prediction to generate a target fine image F2 with
higher robustness, given two coarse and fine image pairs (F1 and C1, F3 and C3) and a corresponding
coarse image C2 (Figure 1).
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and a spatial information-based mapping (ܯଵ  ଶ) are built simultaneously using a two-streamܯ ,
convolutional neural network, taking two coarse and fine image pairs as inputs. Then, using the two 
learned mappings, two independent predictions (ܨ෠ଶଵ,  ෠ଶଶ) of the phenological and land-cover changesܨ
respectively are obtained. The final forward prediction ܨ෠ଶ is generated by combining the above two 
independent predictions using a weighted method. Then, backward prediction is implemented in the 
same fashion, i.e., a temporal change-based and a spatial information-based mapping (ܯଵᇱ ଶᇱܯ , ) are 
built simultaneously, followed by obtaining the two independent predictions (ܨ෠ଶଵᇱ, ܨ෠ଶଶᇱ) for backward 
prediction. The final backward prediction ܨ෠ଶ௕௪  is generated by combining the two independent 
predictions, while the target fine image ܨ෠ଶ௙௜௡௔௟ is obtained through the combination of the forward 
and the backward prediction. A detailed description of each step of DL-SDFM is given below. 
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Figure 1. Images for spatiotemporal fusion. Coarse images were obtained at t1, t2, and t3, while fine
images are available for t1 and t3, and the fine image at t2 is the target image.

The flowchart of DL-SDFM is shown in Figure 2. In forward prediction, a temporal change-based
and a spatial information-based mapping (M1, M2) are built simultaneously using a two-stream
convolutional neural network, taking two coarse and fine image pairs as inputs. Then, using the two
learned mappings, two independent predictions (F̂1

2, F̂2
2) of the phenological and land-cover changes

respectively are obtained. The final forward prediction F̂2 is generated by combining the above two
independent predictions using a weighted method. Then, backward prediction is implemented in the
same fashion, i.e., a temporal change-based and a spatial information-based mapping (M′1, M′2) are
built simultaneously, followed by obtaining the two independent predictions (F̂1′

2 , F̂2′
2 ) for backward

prediction. The final backward prediction F̂bw
2 is generated by combining the two independent

predictions, while the target fine image F̂ f inal
2 is obtained through the combination of the forward and

the backward prediction. A detailed description of each step of DL-SDFM is given below.
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2.1. Temporal Change-Based Mapping

Existing learning-based spatiotemporal fusion methods do not introduce the physical temporal
change information. To augment the learning-based spatiotemporal fusion method with temporal
change information and develop a more powerful ability to predict phenological change, we formulate
the temporal change-based mapping.

Suppose that the changes of reflectance from date t1 to t2 are linear. If the period ∆t is short,
the coarse image at t2 can be described as

C2(x, y, B, t2) = a(x, y, B, ∆t) ×C1(x, y, B, t1) + b(x, y, B, ∆t) (1)

where C denotes the coarse image, (x, y) is a given pixel location at band B at two different dates, while
a and b are the coefficients of the linear regression model that describe the temporal change of the
reflectance of the coarse image between t1 and t2. Since the coarse image has similar spectral bands
to the fine image, the linear relationship between the two known coarse images (C1 and C2) can be
applied to the fine image at t1 to obtain the target fine image F2:

F2(x, y, B, t2) = a(x, y, B, ∆t) × F1(x, y, B, t1) + b(x, y, B, ∆t). (2)

The coefficients a and b can be estimated using the least squares method in a moving window.
However, this will increase the computational cost. Therefore, we assume that a is equal to 1 to reduce
the computational cost, so the target fine image at t2 can be calculated as

F2(x, y, B, t2) = F1(x, y, B, t1) + C2(x, y, B, t2) −C1(x, y, B, t1). (3)

In this case, Equation (3) is equal to the basis of STARFM. If we further introduce a conversion
coefficient V into (3) to apply the method to the spatial heterogeneity regions, the target fine image at
t2 can be calculated as

F2(x, y, B, t2) = F1(x, y, B, t1) + V(x, y, B, ∆t) × [C2(x, y, B, t2) −C1(x, y, B, t1)]. (4)

Equation (4) is equal to the basis of ESTARFM. From the above analysis, the above methods can
be summarized as the following mapping:

F2 = M(F1, ∆T) (5)

where M is the mapping function and ∆T represents the temporal change information. The mapping
function M is a predefined weighting function in a moving window. Although the effectiveness
of M in the prediction of phenological change has been verified, since it is difficult to accurately
model the complex and nonlinear relationships between the central and neighboring information,
the generalization of these methods with such an artificial and predefined weighting function can
be improved.

For a more adequate characterization of the complex and nonlinear mapping function M to
improve the fusion performance in phenological change prediction, in this paper, we leverage the
CNN’s capability in nonlinear mapping representation to formulate a nonlinear mapping M1 for
phenological change prediction and learning of the self-adaption weights.

Specifically, for forward prediction, we consider F3 as the label, and the temporal change
information C3 −C1 and the known fine image F1 as the inputs. The mapping M1 is learned via the
proposed two-stream convolutional neural network (Section 2.3):

Φ1 = argmin L1(M1(C13, F1,φ), F3) (6)
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where Φ1 is the parameter of mapping M1, L1 is the defined loss function, and C13 is an abbreviated
form of C3 −C1, which represents the temporal change information.

2.2. Spatial Information-Based Mapping

The mapping M1 can be regarded as the linear-based spatiotemporal fusion with prior images,
focusing on the view of temporal change. Although the self-adaption weight learned by the CNN has
more powerful generalization ability than the traditional linear-based spatiotemporal fusion methods,
since the basis of M1 is the same as that of STARFM, it also lacks the ability to address the predictions
with land-cover change. Therefore, for the latter, we further formulate the mapping M2, which can
directly reconstruct the spatial detail.

Learning-based spatiotemporal fusion methods are considered to have a stronger ability to predict
land-cover change. These methods first formulate the complex mapping between the coarse and fine
images based on spatial structural similarity and then use the learned mapping to predict the target fine
image. Given two fine and coarse image pairs F1 and C1, F3 and C3, the nonlinear mapping between
the fine and coarse images can be defined as

Φ = argmin L(M(Ci,φ), Fi), where i = 1, 3. (7)

Although the above mapping endows the spatiotemporal fusion method with the capacity of
predicting land-cover change, the magnification factor in spatiotemporal fusion is more significant
than in single-image super-resolution (usually ranging from 2 to 4 in single-image super-resolution).
In this case, texture details are severely blurred and distorted in coarse images. Thus, it may not be
useful to reconstruct the spatial details directly using the above mapping.

To improve the above mapping’s ability to directly reconstruct the spatial details, we introduce
the spatial difference information between fine and coarse images, which is expressed by F−C, into
the mapping (Equation (7)) to formulate the mapping M2. Note that the spatial difference information,
which is also expressed as high-frequency information, has been shown to be useful in reconstructing
the spatial detail [27]. For the mapping M2 in forward prediction, we regard F3 as the label, and
the spatial differences information F1 − C1 and the known coarse image C3 as the inputs. Similarly,
the nonlinear mapping M2 is also learned by the proposed two-stream convolutional neural network.

Φ2 = argmin L2(M2(C3, F1 −C1,φ), F3) (8)

where Φ2 is the parameter of mapping M2, and L2 is the defined loss function.

2.3. Network Architecture

In this paper, we propose a relatively lightweight two-stream CNN with a dilated
convolution-based inception module to simultaneously learn the mappings M1 and M2. The network
consists of three stages: (1) multi-scale feature extraction; (2) multi-source feature fusion; and (3) image
reconstruction. The overall architecture and the configuration of the network are provided in Figure 4
and Table 1, respectively. A detailed description of each stage is given below.

(1) Multi-scale feature extraction
Remote sensing images with high spatial heterogeneity contain abundant texture details, where the

size of ground objects varies greatly. Thus, it is effective to use the rich multi-scale spatial information
to improve the robustness of the feature extraction in these areas. To capture multi-scale spatial
information, the GoogLeNet inception module proposed by Szegedy et al. [34] concatenates the outputs
of different-sized filters, e.g., 3 × 3, 5 × 5, 7 × 7, assuming that each filter can capture information at the
corresponding scale. Recently, the inception module has been utilized for image reconstruction and
fusion tasks and has achieved state-of-the-art performance [35–37]. However, the increase of the size
of the filters will inevitably result in an increase of parameters, which may not be appropriate in the
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case of the insufficient prior images (in our case, only two fine and coarse image pairs are available for
training for the spatiotemporal fusion task).

Table 1. Detailed network configuration.

Main Stages Layer Number Network Configuration

Multi-Scale Feature Extraction

Layer 1 Dilated Conv+Relu: 64 × 3 × 3, dilated = 1, stride = 1
Layer 2 Dilated Conv+Relu: 64 × 3 × 3, dilated = 2, stride = 1
Layer 3 Dilated Conv+Relu: 64 × 3 × 3, dilated = 3, stride = 1
Layer 4 Concat: Layer 1 + Layer 2 + Layer 3
Layer 5 Conv+Relu: 64 × 3 × 3
Layer 6 Dilated Conv+Relu: 64 × 3 × 3, dilated = 1, stride = 1
Layer 7 Dilated Conv+Relu: 64 × 3 × 3, dilated = 2, stride = 1
Layer 8 Dilated Conv+Relu: 64 × 3 × 3, dilated = 3, stride = 1
Layer 9 Concat: Layer 6 + Layer 7 + Layer 8

Layer 10 Conv+Relu: 64 × 3 × 3

Multi-Source Feature fusion

Layer 11 Concat: Layer 5 + Layer 10
Layer 12 Conv+Relu: 64 × 3 × 3
Layer 13 Dilated Conv+Relu: 64 × 3 × 3, dilated = 3, stride = 1
Layer 14 Dilated Conv+Relu: 64 × 3 × 3, dilated = 2, stride = 1
Layer 15 Dilated Conv+Relu: 64 × 3 × 3, dilated = 1, stride = 1

Image Reconstruction Layer 16 Conv: 1 × 3 × 3

Inspired by the GoogLeNet inception module, Shi [38] proposed the dilated convolution-based
inception module to capture multi-scale information. In contrast to conventional convolutions, dilated
convolutions enlarge the receptive field and maintain the size of the convolution kernel filter to
avoid the increase of parameters. Dilated convolution employs the same filter at different ranges
with different dilation factors, which allows it to capture multi-scale spatial information without
increasing the parameters. As illustrated in Figure 3, the three dilated convolutions in the dilated
convolution-based inception module can capture the multi-scale spatial information (see the pixels in
blue), whilst operating on the same scale.
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In this paper, we utilize this module to capture multi-scale spatial information. As shown in
Figure 4, the three dilated convolutions with kernel size 3 × 3 and dilation factors 1, 2, and 3 are
simultaneously applied on the input image and produce feature maps of 64 channels, followed by
concatenation into a single 192-channel feature map. Then, a conventional convolution with kernel
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size 3 × 3 is performed on the concatenated output and 64 feature maps are generated. A rectified
linear unit (ReLU) is used after each convolution layer to introduce nonlinearity and to speed up the
convergence of the network.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 26 
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(2) Multi-source feature fusion
After capturing the multi-scale spatial information of fine and coarse image pair using the dilated

convolution-based inception module, the extracted multi-scale information is concatenated into a single
384-channel feature map, followed by conventional convolution with kernel size 3 × 3, generating 64
feature maps.

However, a “gridding” issue [39] usually exists in the dilated convolution framework, which
means that layers with an equal dilation factor may result in the loss of a large portion of information.
A hybrid dilated convolution module [39] is a simple solution to address this issue, which uses a
combination of dilated convolutions with different dilation factors to cover a square region without
missing information. For more detailed descriptions of the “gridding” issue and the hybrid dilated
convolution module, we refer the reader to [39].

To further enlarge the receptive field for extracting more contextual information while avoiding
the “gridding” issue, a hybrid dilated convolution module is introduced in the multi-source feature
fusion, where three dilated convolutions are applied with a kernel size of 3 × 3 and dilation factors of
1, 2, and 3, generating 64 feature maps. A ReLU is used after each convolution layer. This process can
be described as:

Fn = Pn(Fn−1) = ReLU(Wn
◦Fn−1 + bn) (9)

where ◦ represents the convolution operation, while Fn, Wn, and bn represent the feature maps, filters,
and biases of the n-th dilated convolutions in the multi-source feature fusion stage.

(3) Image Reconstruction
In the image reconstruction stage, conventional convolution with a kernel size of 3 × 3 and a filter

is utilized to generate the final output.
Given two pairs of fine and coarse image (F1 and C1, F3 and C3), we formulate the objective

function of the proposed network as follows:

{Φ1, Φ2} = argmin
{
λL1 + (1− λ)L2

}
. (10)
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Here, Φ1 and Φ2 denote the network parameters of mappings M1 and M2, λ is the weighting
parameter, and L1 and L2 are the losses of two networks, which are denoted as:

L1 = L(M1(C13, F1, Φ1), F3) (11)

L2 = L(M2(C3, F1 −C1, Φ2), F3) (12)

where L is the mean square error (MSE)-based loss function.

2.4. Prediction Stage

Based on the two learned mappings (M1 and M2), for the forward prediction, we obtain two
independent predictions (F̂1

2 and F̂2
2), focusing on phenological and land-cover change, respectively.

One pair of known fine and coarse images (F1 and C1) and a coarse image (C2) at prediction date t2 are
taken as the inputs:

F̂1
2 = M1(C12, F1, Φ1) (13)

F̂2
2 = M2(C2, F1 −C1, Φ2). (14)

Since the two mappings are based on temporal change and spatial information respectively,
the two independent predictions F̂1

2 and F̂2
2 may have different applicability under different scenarios.

Here, we employ a weighted combination method to synthesize the two independent predictions,
giving DL-SDFM the ability to predict both phenological and land cover change.

Under ideal conditions, the weight of the weighted combination method can be determined
using the bias between the two predictions and the actual fine image; however, the actual fine image
is unknown. Thus, we utilize the corresponding coarse image at the prediction date instead of the
actual fine image to determine the weight. Meanwhile, to reduce the prediction errors caused by
the inconsistency of spatial resolution between fine and coarse images, the weight measurement is
implemented in a 3 × 3 moving window as follows:

wi(x, y) =

1∑9
j=1

∣∣∣∣F̂i, j
2 (x,y)−c2

j(x,y))
∣∣∣∣

1∑9
j=1

∣∣∣∣F̂1, j
2 (x,y)−C2

j(x,y)
∣∣∣∣ + 1∑9

j=1

∣∣∣∣F̂2, j
2 (x,y)−c2

j(x,y)
∣∣∣∣
, i = 1, 2 (15)

where F̂1, j
2 (x, y) and F̂2, j

2 (x, y) are the reflectance of the j-th pixel of the two independent predictions in
a 3 × 3 moving window, centered on pixel (x, y), while C2

j(x, y) is the corresponding reflectance of the
j-th pixel of the coarse image at the prediction date. Then, the final prediction F̂2 can be obtained using:

F̂2(x, y, B, t2) = w1(x, y, B, t2)F̂1
2(x, y, B, t2) + w2(x, y, B, t2)F̂2

2(x, y, B, t2). (16)

2.5. Combination with Backward Prediction

The method described above only focuses on forward prediction. To improve robustness through
the combination of both forward and backward predictions, we further consider the backward prediction.
Accordingly, F1 is regarded as the label in the training stage of the backward prediction. The two
mappings in backward prediction are also simultaneously learned by the two-stream convolutional
neural network:

Φ′1 = argmin L1
′
(
M′1(C31, F3,φ), F1

)
(17)

Φ′2 = argmin L2
′
(
M′2(C1, F3 −C3,φ), F1

)
(18)

where Φ′1 and Φ′2 denote the network parameters of the two mappings M′1 and M′2 for backward
prediction, and C31 is defined as C1 −C3. Similar to the prediction stage in the forward prediction, the
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two independent backward predictions F̂1′
2 , F̂2′

2 and the final backward prediction F̂bw
2 (x, y, B, t2) are

obtained by:
F̂1′

2 = M′1
(
C32, F3, Φ′1

)
(19)

F̂2′
2 = M′2

(
C2, F3 −C3, Φ′2

)
(20)

F̂bw
2 (x, y, B, t2) = w′1(x, y, B, t2)F̂1′

2 (x, y, B, t2) + w′2(x, y, B, t2)F̂2′
2 (x, y, B, t2) (21)

where w′1(x, y, B, t2) and w′2(x, y, B, t2) denote the weights of the two independent backward predictions.
To combine the forward and backward predictions and obtain the final prediction, we utilize the

same weighted combination method based on a 3 × 3 moving window as described in Section 2.4.

F̂2
f inal(x, y, B, t2) = w f w(x, y, B, t2)F̂2(x, y, B, t2)+wbw(x, y, B, t2)F̂2

bw(x, y, B, t2) (22)

where w f w(x, y, B, t2) and wbw(x, y, B, t2) denote the weight of the forward and backward predictions,
which are determined by the bias between the two predictions and the coarse image at the
prediction date.

3. Experiment

3.1. Study Area and Data Sets

The performance of DL-SDFM was tested on two study sites to verify the effectiveness of the
land-cover change and temporal change prediction, respectively.

The first study site was the Lower Gwydir Catchment (LGC), which is located in northern
New South Wales, with an overall area of 5440 km2 (3200 × 2720 pixels in Landsat images with six
bands). Since a large flood occurred in mid-December 2004, leading to the significant changes in land
cover, it is reasonable to use this study site for testing the effectiveness of DL-SDFM on land-cover
change prediction.

The dataset in this study site is the same as the one used by Emelyanova et al. [9]. In this
experiment, we used two MODIS MOD09GA Collection 5 and Landsat 7 ETM+ image pairs acquired
on 26 November 2004, and 28 December 2004, respectively, and a MODIS image acquired on 12
December 2004, to predict the fine Landsat image acquired on 12 December 2004, while the actual
Landsat image acquired on that date was used to evaluate the fusion performance (Figure 5). MODIS
images were upsampled from 500 m to the same spatial resolution as the Landsat images (25 m) using
a nearest neighbor algorithm.

The second study site was located in a heterogeneous rain-fed agricultural area in central Iowa (CI),
USA that has an overall area of 18,225 km2 (4500 × 4500 pixels in Landsat images with 6 bands) with
an obvious phenological change area. We chose this study site to test the performance of DL-SDFM in
spatially heterogeneous areas with visible phenological change. Two MODIS MOD09GA Collection 6
and Landsat 7 ETM+ image pairs acquired on 14 May 2002, and 2 August 2002, along with the MODIS
image acquired on 2 July 2002, were utilized to predict the Landsat image acquired on 2 July 2002.
As before, the actual Landsat obtained on 2 July 2002 was utilized to evaluate the fusion performance
(Figure 6). MODIS images were upsampled from 480 m to the same spatial resolution as the Landsat
images (30 m) using a nearest neighbor algorithm.
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3.2. Parameter Setting

In the training stage, all the input images of the two mappings were cropped to 50 with a stride
of 50. The parameter was fine-tuned by comparing all these parameters, namely {30, 40, 50, 60} to
obtain the lowest root mean square error (RMSE) on the test datasets. To avoid over-fitting, multi-angle
image rotation (angles of 0◦, 90◦, 180◦, and 270◦) was utilized to increase the training sample size.
For optimization, the proposed network was trained using the Adam algorithm [40] as the gradient
descent optimization method with momentum β1 = 0.9, β2 = 0.999, and ε = 10−8, which is the same
as that used by Yuan et al. [41]. The batch size was set to 64 to fit into the GPU memory. The learning
rate α was initialized to 0.0001 for the whole network, which was determined by comparing all
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these parameters, namely {0.00001, 0.0001, 0.001, 0.01} to obtain the lowest RMSE on the test datasets.
The training process lasted 60 epochs to ensure convergence. After every 10 epochs, the learning
rate was multiplied by a descent factor of 0.5. We employed the Keras deep learning library with
TensorFlow to train the network on a PC with 32 GB RAM, an i7-7700k CPU, and an NVIDIA GTX
1070 GPU.

In the prediction stage, we cropped input images into patches of size 600 × 600 pixels to fit into the
GPU memory. Meanwhile, to avoid boundary artifacts, we ensured that adjacent patches overlapped.

3.3. Comparison and Evaluation Strategy

(1) Comparison with other fusion methods
To verify the superiority of DL-SDFM, three state-of-the-art spatiotemporal fusion methods,

including STARFM, Flexible Spatiotemporal Data Fusion (FSDAF), and STFDCNN, were utilized as
benchmark methods. Fusion results were quantitatively and visually evaluated by comparing the
prediction with the actual fine image acquired at the prediction date. For the quantitative evaluation,
six indices were used: RMSE, correlation coefficient (CC), universal image quality index (UIQI) [42],
the structural similarity (SSIM) [43], erreur relative global adimensionnelle de synthèse (ERGAS) [44],
and the spectral angle mapper (SAM) [45].

RMSE was used to provide a global metric of the radiometric differences between the predicted
and the actual fine image. CC was used to show the linear relationship between the prediction and
the actual fine image. SSIM was used to show the similarity of the overall structure between the
predicted and the actual fine image. UIQI depicts the closeness between the two images utilizing the
differences in the statistical distributions. SAM reflects the spectral fidelity of the prediction, while
ERGAS measures the overall fusion result. The ideal values of RMSE, CC, SSIM, and UIQI are 0, 1,
1, and 1, respectively, while smaller values for ERGAS and SAM indicate better fusion performance.
Additionally, the average Average Absolute Difference (AAD) maps of the six bands between the actual
fine image and fusion results were calculated, which represent the spatial distribution and magnitude
of the predictions’ uncertainty. The closer the AAD was to zero, the less the uncertainty of predictions.

(2) Effectiveness of the fusion of temporal change information with spatial information
In DL-SDFM, the two independent predictions focusing on the phenological and land-cover

change were combined with a weighted combination in a moving window. To verify the effectiveness
of this combination, we compared the quantitative results of the two independent predictions and the
combination results in DL-SDFM. The quantitative evaluation indices include RMSE, CC, SSIM, UIQI,
SAM, ERGAS, and the average AAD maps.

(3) Effectiveness of the reconstruction of the spatial detail
To verify the effectiveness of DL-SDFM in spatial detail reconstruction, taking the prediction

result of band 4 as an example, we further compared the spatial detail of the predictions of STFDCNN
and DL-SDFM in both two study sites. For STFDCNN, in addition to the final prediction, its spatial
detail of the nonlinear mapping result and the super-resolution result were also compared. The peak
signal-to-noise ratio (PSNR), a common quantitative evaluation index in super-resolution, was used to
give an evaluation of the image distortion, where a higher value indicates a better prediction [46].

3.4. Experimental Results

3.4.1. Prediction with Land-Cover Change

(1) Comparison with other fusion methods
The results of different fusion methods for the LGC site are shown in Figure 7, with the sub-areas

inundated by floods zoomed to show more details. It can be seen that the predictions of STARFM
provide the worst results with blurry texture details, while incomplete boundaries with some noise
were generated for the inundated areas. The average AAD maps of STARFM (Figure 8b) further
demonstrate that STARFM fails to handle the image with obvious land-cover change. As shown
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in Figures 7d and 8c, FSDAF produces more precise texture details than STARFM, capturing more
complete spatial variation with less noise in the edge of inundated areas. However, some artifacts still
exist in some heterogeneous areas. STFDCNN yields complete spatial details, except for the inundated
areas, where obvious blocky artifacts can be seen near the edges.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 26 
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Figure 7. Comparison of predicted and actual images at the LGC site. (a) Prior image acquired
on 26 November 2004. (b) Actual image acquired on 12 December 2004. (c) Prediction result of
Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). (d) Prediction result of Flexible
Spatiotemporal Data Fusion (FSDAF). (e) Prediction result of spatiotemporal fusion framework with
Deep Convolutional Neural Networks (STFDCNN). (f) Prediction result of deep learning-based
spatiotemporal data fusion method (DL-SDFM).
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In contrast, as shown in Figures 7f and 8e, the DL-SDFM generates a prediction with relatively
good spatial details, less uncertainty, and clear texture. Moreover, compared to the prediction of
STFDCNN, a more complete boundary of the inundated area was generated, suggesting the superiority
of the DL-SDFM in predictions with obvious land-cover change.

Quantitative results of the different fusion methods are shown in Table 2. It can be seen that
STARFM provides the worst performance for all metrics, which is mainly due to the failure in predicting
the inundated area (Figure 7c). FSDAF generates good results with considerably better values for all
metrics. Compared to the FSDAF, STFDCNN is significantly better in the fusion accuracy for band 5
and band 7. Considering that band 5 changes the most when a flood occurs, this result indicates the
superiority of the STFDCNN for predictions with land-cover change. Nevertheless, the DL-SDFM
provides the best performance for all six bands, with the maximum similarity to the actual image
and the best spectral fidelity, suggesting that the DL-SDFM is more powerful in making predictions
involving land-cover change.

Table 2. Quantitative results of different fusion methods applied to the LGC site. Bold indicates the
best result. CC: correlation coefficient, ERGAS: erreur relative global adimensionnelle de synthèse,
RMSE: root mean square error, SAM: spectral angle mapper, SSIM: structural similarity, UIQI: universal
image quality index.

Band STARFM FSDAF STFDCNN DL-SDFM STARFM FSDAF STFDCNN DL-SDFM

RMSE SSIM

Band 1 0.0174 0.0146 0.0156 0.0130 0.9020 0.9143 0.9166 0.9319
Band 2 0.0221 0.0201 0.0207 0.0183 0.8615 0.8744 0.8819 0.8973
Band 3 0.0336 0.0251 0.0264 0.0231 0.8138 0.8369 0.8481 0.8690
Band 4 0.0472 0.0378 0.0361 0.0339 0.7045 0.7402 0.7669 0.7666
Band 5 0.1941 0.0612 0.0545 0.0517 0.4357 0.5316 0.6049 0.6126
Band 7 0.2527 0.0512 0.0472 0.0389 0.4145 0.5826 0.6600 0.6794

UIQI CC

Band 1 0.9437 0.9449 0.9437 0.9528 0.6313 0.7230 0.7218 0.7666
Band 2 0.9498 0.952 0.9518 0.9596 0.6610 0.7117 0.7136 0.7511
Band 3 0.9388 0.9445 0.9431 0.9531 0.5800 0.7170 0.7190 0.7616
Band 4 0.9400 0.9466 0.9543 0.9581 0.7120 0.8242 0.8237 0.8503
Band 5 0.7016 0.7593 0.8288 0.8220 0.4260 0.7803 0.7952 0.8255
Band 7 0.5882 0.6666 0.8023 0.8031 0.3571 0.7589 0.7158 0.8223

SAM 16.8212 11.8909 10.2347 9.8418
ERGAS 43.1656 2.2606 1.8155 1.5770

(2) Effectiveness of the fusion of temporal change information with spatial information
The comparison results of the phenological change prediction, land-cover change prediction and

the combination results for both the forward prediction and backward prediction of DL-SDFM for the
LGC site are shown in Figure 9 and Table 3. It can be seen that the combination result yielded better
fusion performance at the LGC site, which demonstrates the necessity of introducing the physical
temporal change information and the effectiveness of the weighted combination method utilized in
this paper.
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the DL-SDFM in the LGC site. (a) Forward prediction based on M1. (b) Forward prediction based on
M2. (c) Fusion results of forward prediction. (d) Backward prediction based on M1. (e) Backward
prediction based on M2. (f) Fusion results of backward prediction.

Table 3. Quantitative results of forward predictions based on M1 (Phe-1), forward prediction based on
M2 (Lan-1), backward prediction based on M1 (Phe-2), backward prediction based on M2 in (Lan-2),
fusion results of forward prediction (Fus-1), and fusion results of backward prediction (Fus-2) in
DL-SDFM, applied to the LGC site, where bold indicates the best result.

Phe-1 Lan-1 Fus-1 Phe-2 Lan-2 Fus-2

RMSE

Band 1 0.0141 0.0141 0.0136 0.0147 0.0138 0.0139
Band 2 0.0199 0.0191 0.0188 0.0209 0.0192 0.0191
Band 3 0.0253 0.0252 0.0244 0.0260 0.0239 0.0238
Band 4 0.0357 0.0356 0.0351 0.0373 0.0351 0.0346
Band 5 0.0577 0.0561 0.0546 0.0589 0.0547 0.0534
Band 7 0.0428 0.0407 0.0399 0.0507 0.0425 0.0417

SSIM

Band 1 0.9215 0.9229 0.9251 0.9202 0.9253 0.9261
Band 2 0.8823 0.8870 0.8890 0.8786 0.8902 0.8909
Band 3 0.8473 0.8497 0.8538 0.8450 0.8593 0.8609
Band 4 0.7414 0.7382 0.7457 0.7413 0.7621 0.7623
Band 5 0.5476 0.5672 0.5707 0.5840 0.5922 0.6116
Band 7 0.6275 0.6534 0.6551 0.6144 0.6552 0.6577

UIQI

Band 1 0.9459 0.9472 0.9489 0.9398 0.9497 0.9480
Band 2 0.9521 0.9571 0.9575 0.9443 0.9579 0.9566
Band 3 0.9421 0.9456 0.9472 0.9378 0.9525 0.9514
Band 4 0.9520 0.9531 0.9543 0.9482 0.9566 0.9573
Band 5 0.7986 0.8018 0.8125 0.7836 0.8029 0.8087
Band 7 0.7729 0.7953 0.7981 0.7496 0.7772 0.7819

CC

Band 1 0.7216 0.7459 0.7473 0.7356 0.7424 0.7474
Band 2 0.6967 0.7302 0.7345 0.7088 0.7303 0.7349
Band 3 0.7128 0.7398 0.7442 0.7156 0.7384 0.7432
Band 4 0.8197 0.8228 0.8285 0.8031 0.8424 0.8442
Band 5 0.7580 0.7968 0.8001 0.7450 0.7930 0.8029
Band 7 0.7534 0.8004 0.8038 0.6333 0.7777 0.7792

SAM 11.0671 10.5566 10.2318 12.4073 10.9303 10.7279
ERGAS 1.6579 1.7198 1.6439 1.7152 1.7091 1.6233
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(3) Effectiveness of the reconstruction of the spatial detail
As shown in Figure 10, for the LGC site, both the nonlinear mapping and the super-resolution

in STFDCNN fail to reconstruct the spatial details. The reconstruction of the spatial details of the
predictions requires the additional high-pass modulations. The DL-SDFM, by comparison, can
reconstruct the prediction with complete spatial details directly, which demonstrates its effectiveness
in spatial detail reconstruction.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 26 
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Figure 10. Comparison of spatial details of the prediction of the STFDCNN and DL-SDFM in the
LGC site. (a) Coarse image acquired at prediction date. (b) Nonlinear mapping result of STFDCNN.
(c) Super-resolution result of STFDCNN. (d) Actual image acquired at prediction date. (e) Prediction of
STFDCNN. (f) Prediction of DL-SDFM.

3.4.2. Prediction with Phenological Change

(1) Comparison with other fusion methods
The CI site is located in a heterogeneous rain-fed agricultural area that underwent a phenological

change. As shown in Figure 11a,b, and Figure 12a, obvious phenological differences exist between
the two pairs of images, increasing the difficulty of prediction. As shown in Figure 11, STARFM fails
to predict the heterogeneous areas with obvious phenological changes. The zoomed-in images in
Figure 11c show that the prediction of STARFM has a large spectral deviation and incomplete texture
details in this area. FSDAF, by comparison, provides a prediction more similar to the actual image,
while the spectral deviation is significantly reduced. STFDCNN again provides plausible spatial
details; however, more obvious phenological deviation than that of the FSDAF can be seen.
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(a) Prior Landsat image acquired on 14 May 2002. (b) Actual Landsat image acquired on 2 July 2002.
(c) Prediction result of STARFM. (d) Prediction result of FSDAF. (e) Prediction result of STFDCNN.
(f) Prediction result of DL-SDFM.
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Figure 12. Average AAD maps of the six bands between the actual image and prediction results in
the CI site. (a) Actual image and prior Landsat image acquired on 14 May 2002. (b) Actual image
and STARFM prediction. (c) Actual image and FSDAF prediction. (d) Actual image and STFDCNN
prediction. (e) Actual image and DL-SDFM predictions.

The DL-SDFM, by contrast, yielded the prediction most similar to the actual image, suggesting that
by considering the physical temporal change information, DL-SDFM is more powerful in predicting
phenological change. The average AAD maps of the different fusion methods in the CI site (Figure 12)
show that the prediction of the DL-SDFM has the least uncertainty compared to the other fusion
methods, which further verifies the superiority of the DL-SDFM in predicting phenological change
in heterogeneous areas. Quantitative results of the different fusion methods (Table 4) show that
DL-SDFM also performs best with regard to metrics except in the cases of band 5 and band 7. The
obvious improvement of DL-SDFM in most of the bands verifies its effectiveness in phenological
change prediction.

Table 4. Quantitative results of different fusion methods applied to the CI site. Bold indicates the
best result.

Band STARFM FSDAF STFDCNN DL-SDFM STARFM FSDAF STFDCNN DL-SDFM

RMSE SSIM

Band 1 0.0464 0.0148 0.0135 0.0118 0.8380 0.9070 0.9318 0.9406
Band 2 0.0250 0.0178 0.0162 0.0144 0.8241 0.8707 0.8992 0.9079
Band 3 0.1405 0.0275 0.0260 0.0220 0.5667 0.7434 0.7856 0.8201
Band 4 0.0622 0.0570 0.0607 0.0461 0.3979 0.4517 0.4701 0.5312
Band 5 0.0795 0.0553 0.0387 0.0463 0.4318 0.5011 0.7419 0.5679
Band 7 0.2324 0.0612 0.0454 0.0460 0.2922 0.4026 0.6692 0.5638

UIQI CC

Band 1 0.8953 0.9298 0.9507 0.9599 0.1415 0.6609 0.7280 0.7719
Band 2 0.9432 0.9554 0.9653 0.9711 0.3701 0.6377 0.7306 0.7560
Band 3 0.7684 0.8768 0.9029 0.9256 0.1009 0.5687 0.6655 0.7207
Band 4 0.9781 0.9810 0.9790 0.9872 0.4440 0.5037 0.5118 0.6511
Band 5 0.9368 0.9576 0.9807 0.9710 0.3550 0.4813 0.7483 0.6008
Band 7 0.6890 0.8352 0.9231 0.9149 0.1397 0.3445 0.6507 0.5582

SAM 13.1923 9.6937 7.6407 7.5627
ERGAS 8.9080 1.7238 1.4154 1.3905

(2) Effectiveness of the fusion of temporal change information with spatial information
As shown in Figure 13 and Table 5, the comparison results of the phenological change prediction,

land-cover change prediction, and the combination results in the CI site are similar to those of the LGC
site. The combination provides the best fusion performance for most of the bands, demonstrating the
effectiveness of the weighted combination method.
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Figure 13. The average AAD maps of the six bands between the actual image and different predictions
of the DL-SDFM in CI site. (a) Forward prediction based on M1. (b) Forward prediction based on
M2. (c) Fusion results of forward prediction. (d) Backward prediction based on M1. (e) Backward
prediction based on M2. (f) Fusion results of backward prediction.

Table 5. Quantitative results of forward prediction based on M1 (Phe-1), forward prediction based
on M2 (Lan-1), backward prediction based on M1 (Phe-2), backward prediction based on M2 (Lan-2),
fusion results of forward prediction (Fus-1), and fusion results of backward prediction (Fus-2) applied
to the CI site, where bold indicates the best result.

Phe-1 Lan-1 Fus-1 Phe-2 Lan-2 Fus-2

RMSE

Band 1 0.0139 0.0131 0.0131 0.0135 0.0132 0.0129
Band 2 0.0171 0.0153 0.0152 0.0164 0.0161 0.0156
Band 3 0.0294 0.0244 0.0249 0.0249 0.0237 0.0232
Band 4 0.0538 0.0514 0.0504 0.0746 0.0557 0.0580
Band 5 0.0526 0.0484 0.0470 0.0563 0.0559 0.0541
Band 7 0.0596 0.0480 0.0472 0.0655 0.0581 0.0588

SSIM

Band 1 0.9230 0.9261 0.9299 0.9275 0.9320 0.9331
Band 2 0.8872 0.8927 0.8960 0.8992 0.8980 0.9026
Band 3 0.7561 0.7828 0.7871 0.7852 0.8057 0.8070
Band 4 0.5084 0.5186 0.5280 0.3997 0.4096 0.4253
Band 5 0.5526 0.5362 0.5545 0.4893 0.4571 0.4891
Band 7 0.5333 0.5404 0.5583 0.4241 0.4606 0.4659

UIQI

Band 1 0.9365 0.9496 0.9496 0.9433 0.9484 0.9487
Band 2 0.9573 0.9695 0.9699 0.9613 0.9638 0.9655
Band 3 0.8363 0.9097 0.9018 0.9027 0.9189 0.9176
Band 4 0.9820 0.9837 0.9842 0.9610 0.9816 0.9792
Band 5 0.9617 0.9680 0.9705 0.9574 0.9582 0.9610
Band 7 0.8501 0.9093 0.9128 0.8549 0.8777 0.8757

CC

Band 1 0.6851 0.7059 0.7147 0.7282 0.7383 0.7477
Band 2 0.6525 0.7021 0.7076 0.7057 0.7069 0.7258
Band 3 0.5915 0.6450 0.6528 0.6440 0.6692 0.6834
Band 4 0.5987 0.6348 0.6420 0.3475 0.4752 0.4692
Band 5 0.5001 0.5537 0.5709 0.5114 0.4623 0.5086
Band 7 0.3658 0.5265 0.5368 0.3799 0.4271 0.4289

SAM 8.8634 7.8794 7.7692 10.6879 9.3012 9.2725
ERGAS 2.1371 1.5012 1.5997 1.5478 1.5039 1.4619



Remote Sens. 2020, 12, 698 20 of 26

(3) Effectiveness of the spatial detail reconstruction
The results in the CI site (Figure 14) agreed with our expectation: the nonlinear mapping and the

super-resolution in STFDCNN fail to reconstruct the spatial details. The DL-SDFM, by comparison,
can reconstruct the prediction with complete spatial details directly. Although the visual effect of the
DL-SDFM is a bit inferior to that of the STFDCNN, the lower PSNR of the STFDCNN suggests an
uncertainty accumulation during the multiple steps.Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 26 
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differences in fusion accuracy under different weighting settings, indicating that the fusion 
performance of the DL-SDFM is not sensitive to the weighting sets. Additionally, the fusion accuracy 
is satisfactory when the parameter is set to 0.5, so this value was chosen in this paper. 

Figure 14. Comparison of the spatial detail of the prediction of the STFDCNN and DL-SDFM in the
CI site. (a) Coarse image acquired at prediction date. (b) Nonlinear mapping result of STFDCNN.
(c) Super-resolution result of STFDCNN. (d) Actual image acquired at prediction date. (e) Prediction of
STFDCNN. (f) Prediction of DL-SDFM.

4. Discussion

4.1. Parameter Sensitivity Analysis

The weighting parameter λ controls the weight of the loss of two independent mappings. In this
section, we analyze the influence of λ in both two study sites (Figure 15). RMSE was utilized as
the quantitative evaluation index of fusion performance. It can be seen that there are no significant
differences in fusion accuracy under different weighting settings, indicating that the fusion performance
of the DL-SDFM is not sensitive to the weighting sets. Additionally, the fusion accuracy is satisfactory
when the parameter is set to 0.5, so this value was chosen in this paper.
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superiority of the DL-SDFM method over three state-of-the-art spatiotemporal fusion methods. The 
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We analyze the convergence of the network in two study areas. As shown in Figure 16, during
the optimization, the MSE of all the bands varies significantly in the beginning; then, it falls steadily
and stabilizes. The loss curves in the two study sites demonstrate that the network converges within
60 epochs.
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4.2. Advantages of the Proposed Method

The experimental results in the data sets with phenological and land-cover change verified
the superiority of the DL-SDFM method over three state-of-the-art spatiotemporal fusion methods.
The novelty of the DL-SDFM can be summarized as follows.
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First, DL-SDFM addresses the prediction of both phenological and land-cover change with better
generalization ability and robustness. The experimental results of the LGC site show that although
STARFM is applicable in phenological change prediction, it fails to handle images with obvious
land-cover change due to the inappropriate assumption that land cover remains unchanged. DL-SDFM,
by comparison, shows a significant improvement in fusion performance, showing its effectiveness in
the prediction of heterogeneous areas with phenological change. This improvement can be attributed
to the temporal change-based mapping, which is learned by the two-stream CNN and has more
powerful generalization ability and robustness than the traditional linear-based spatiotemporal fusion
method, whose effectiveness depends on an artificial predefined weight function. DL-SDFM learns
weights self-adaptively using the prior information, resulting in a more wide generality of the weight.
Additionally, compared to the FSDAF, the recently proposed hybrid spatiotemporal fusion method,
which is effective in land-cover change prediction due to the residual compensation, especially for the
edges between two land-cover types, DL-SDFM also shows better fusion performance, which further
demonstrates its ability to predict land-cover change.

Second, DL-SDFM endows the learning-based spatiotemporal fusion method with temporal
change information, resulting in a more powerful ability to predict phenological change. Existing
learning-based spatiotemporal fusion methods regard spatiotemporal fusion as a single image
super-resolution task, which has advantages for the prediction of land-cover change. However,
the lack of physical temporal change information renders these methods ineffective for the prediction
of phenological change. For this reason, physical temporal change information was employed through
formulating the temporal change-based mapping in DL-SDFM. Experimental results in the CI site show
that although the STFDCNN provides plausible spatial details, more obvious phenological deviation
than with FSDAF is observed because no physical temporal change information has been taken into
account to address the phenological change. The DL-SDFM, by comparison, yields the prediction
most similar to the actual image, which demonstrates its more powerful ability to predict phenological
changes than the STFDCNN.

Third, DL-SDFM can directly reconstruct the prediction with complete spatial details; there is
no need to use any other auxiliary modulation. Since the magnification factor of spatiotemporal
fusion is much more significant than that in single-image super-resolution, existing learning-based
spatiotemporal fusion methods using single-image super-resolution usually utilize the additional
high-pass modulation to recover spatial details indirectly, which is tedious and increases the risk of
cumulative uncertainties. The spatial information-based mapping in the DL-SDFM, by comparison,
can reconstruct spatial details directly by incorporating the high-frequency information. This
improvement simplifies the process of the learning-based spatiotemporal fusion method and improve
the practicability.

4.3. Adaptability of the Proposed Method

In this paper, two pairs of fine and coarse image are utilized under the assumption that only two
pairs of cloud-free fine and coarse image are available. This assumption is consistent with that of some
typical spatiotemporal fusion methods [8,26,30], and it is considered to be reasonable, because it is
usually not easy to collect more available images due to the cloud contamination and the limitations
of the revisit period. For the case of more than two available pairs of fine and coarse image, it is
recommended to use all the available pairs of fine and coarse image to train the two-stream CNN.
Once the network has been trained, it can be directly used for the entire dataset. Meanwhile, due to the
increase of the number of training samples, the robustness and generalization ability of the network
will be improved.

Although in the DL-SDFM a relatively light-weight network is utilized, its computational efficiency
is a bit lower than the traditional linear-based fusion methods. The average training time of each band
for forward and backward prediction was 7012.8 s and 16,087.6 s, respectively. The average prediction
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time of each band for the above predictions was 1028.6 s and 2779.3 s. Therefore, to further improve
the efficiency, it is recommended to employ GPU equipment with higher performance.

Spatiotemporal fusion methods assume that high spatial and temporal resolution images have
similar spectral and radiometric properties. Since MODIS has similar bandwidth and radiation to
Landsat, these two kinds of sensors were utilized to obtain the dataset used in this paper. To further
apply the DL-SDFM to other types of sensors with significant radiometric inconsistency, such as the
Chinese GF-1 wide-field view and MODIS [47,48], it is recommended to reduce the radiation differences
first by applying a radiometric normalization.

4.4. Limitations and Future Work

DL-SDFM still has some limitations.
First, DL-SDFM requires two pairs of known fine and coarse images. However, in many regions,

it is not easy to collect these images because of cloud contamination and the limitation of the revisit
period. Our future work might focus on combining the deep learning-based and the linear-based
spatiotemporal fusion methods to develop a hybrid spatiotemporal fusion method that is applicable in
the case of one known pair of fine and coarse images. In particular, since the two mappings in DL-SDFM
cannot be learned using one pair of fine and coarse images, the linear-based spatiotemporal fusion
method and the deep learning-based super-resolution can be employed to address the phenological
change prediction and the land-cover change prediction, respectively.

Second, although the DL-SDFM can reconstruct spatial details directly, its visual effect is slightly
inferior to that of STFDCNN. The reason may lie in that the STFDCNN uses the additional high-pass
modulation twice to reconstruct the spatial details. Additionally, MSE is considered to generate the
overly smooth effect, so it may also be the reason that the visual effect of the DL-SDFM is slightly
inferior to that of STFDCNN. Therefore, future work should improve the visual effect further by
employing a more appropriate loss function to replace the MSE or using a combination of multiple loss
functions [49,50].

5. Conclusions

In this paper, we propose a novel deep learning-based spatiotemporal data fusion method
(DL-SDFM) with a two-stream CNN, which considers both forward and backward prediction to predict
the target fine image. The proposed method simultaneously forms temporal change-based and spatial
information-based mappings for the prediction of the phenological change and the land-cover change,
respectively. In this way, the DL-SDFM addresses both the phenological change prediction and the
land-cover change prediction with higher generality and robustness. The comparative experimental
results for the test datasets demonstrated the superiority of the DL-SDFM over STARFM, FSDAF,
and STFDCNN. Moreover, compared to the existing learning-based spatiotemporal fusion methods,
the DL-SDFM has a more powerful ability to predict the phenological change, due to the introduction
of the physical temporal change information. Additionally, the ability of DL-SDFM to reconstruct
the prediction with complete spatial details directly simplifies the process of deep learning-based
spatiotemporal fusion and improves its applicability. However, some potential limitations are
worthwhile to note. Future improvements include applying the DL-SDFM to the case of one known
pair of fine and coarse images and the improvement of the visual effect by employing a more appropriate
loss function.
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