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Abstract

Context United Nations outlined 17 Sustainable

Development Goals (SDGs), but at the current rate

of progress most will not be achieved within the

desired timeframe. Since a third of SDGs are directly

related to land resources, it is crucial to improve the

effectiveness and efficiency of land-use planning. In

that regard, there is particular value in algorithmically

optimizing land-use planning to better support sus-

tainability. An ideal tool for such optimizations is the

nondominated sorting genetic algorithm II (NSGA-II).

Objectives Improved versions of NSGA-II have

been actively developed for land-use problems, but

no thorough evaluations and very few comparative

studies have been performed. Thus, the objective is to

conduct a thorough evaluation of and a systematic

comparison between improved NSGA-II algorithms

for sustainable land-use optimization.

Methods We identified both the most popular and

the latest improved algorithms. A theoretical compar-

ison was first made between them in terms of

initialization, crossover, mutation, and archiving

strategy. Then, a framework consisting of four hier-

archal levels (principle, macro-criteria, micro-criteria,

and indicators) was developed and applied to make a

comprehensive comparison through experiments.

Results The most popular algorithm was demon-

strated to produce high-quality results and be compu-

tationally efficient, whereas the other performs better

in the diversity of results, space efficiency, and the

degree of optimization. Both algorithms exhibited

excellent performance in handling constraints.
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Conclusions Possible approaches to further improve

the algorithms include borrowing ideas of scale

optimization and gene flow. The proposed framework

is capable of guiding further improvement by devel-

opers and algorithm selection by users.

Keywords Landscape planning � Land-use
optimization � Sustainable development � Sustainable
landscape pattern � NSGA-II � Pareto optimal � Pareto
front

Introduction

Sustainable development—defined as ‘‘development

that meets the needs of the present without compro-

mising the ability of future generations to meet their

own needs’’ (World Commission on Environment and

Development 1987, p. 8)—appears to be the central

challenge and the common goal of our time (Chen and

Wu 2009; Wu 2013; Liu 2018; Opdam et al. 2018).

Indeed, the United Nations 2030 Agenda for Sustain-

able Development has been adopted worldwide,

guiding the actions of individuals, societies, and

countries towards a total of 17 sustainable develop-

ment goals (SDGs; da Silva et al. 2018; Sun et al.

2018; Wang et al. 2020). According to the Land Portal

Foundation (2019), 30% of these SDGs are directly

related to land use, such as ‘‘zero hunger’’ and ‘‘no

poverty’’. This suggests that it is critical for land use to

be optimized to support better sustainable develop-

ment (Wu et al. 2011; Gustafson 2013; Hu et al. 2015;

Pohjanmies et al. 2017; Lin et al. 2019; Gao et al.

2020).

Sustainable land-use optimization is the process of

optimizing the composition (e.g., the number of land-

use types and the proportion of each type) and the

configuration (e.g., the spatial distribution of land-use

types) of the land-use types of each unit of a

geographical area to meet the requirements of sus-

tainable development. Such a process usually balances

the tradeoffs among multiple land-use objectives (e.g.,

ecological protection and economic growth), in an

attempt to maximize net utility across all outcomes.

Often one objective can only be increased (or

decreased) at the expense of decreasing (or increasing)

another objective (Karimi and Hockings 2018), but

more sophisticated approaches seek solutions that

simultaneously improve multiple objectives while

minimizing negative impacts on others, such that the

net result is the optimal net benefit (e.g., Liu et al.

2018; Wang et al. 2018). These conflicts were

traditionally resolved in a highly subjective manner

in which the aim was to reach some thresholds of

subjective values, rather than determine the best land-

use planning (Caparros-Midwood et al. 2015). This

subjective method is vulnerable to perception error

and unable to effectively or rigorously incorporate

multiple costs and benefits. Therefore, it is not

suitable for the urgent needs of sustainable develop-

ment, especially given the large challenges the world

faces in meeting the goals of the SDGs (Fu et al. 2019).

An alternative approach to land-use optimization

that is less subjective and more robust is to employ

optimization techniques to address those conflicts.

Among all optimization techniques, linear program-

ming (LP) was applied earliest to sustainable land-use

optimization. Its applications can be traced back to

Schlager’s (1965) formulation of a land-use plan

design model using LP. This model was very influen-

tial and was the basis of a wide range of land-use

optimization programs, such as FORPLAN (Iverson

and Alston 1986), which was used for decades to guide

timber harvest planning for the United States Forest

Service (USFS). Despite the recognized limitations of

the modeling approach, it was groundbreaking in

attempting to optimize the sustained yield of natural

resources objectively. The primary disadvantage of

using LP for sustainable land-use optimization is the

need to integrate multiple objective functions by

subjectively setting the weights of different objectives,

using the weighted-sum method (Chen et al. 2019;

Herrera-León et al. 2019). For example, in the case of

FORPLAN as applied to USFS planning, timber

production was the dominant criterion, and other

resource conditions and goals (such as endangered

species, recreation, and water) were not sufficiently

incorporated. In addition, the model made incorrect

assumptions about regeneration and harvest place-

ment, leading to what is now widely accepted to be

unsustainable land-use decisions that led to dramatic

policy upheavals and reversals (Thomas et al. 2006).

To avoid subjective weighting, new optimization

methods have been developed based on the identifi-

cation of a Pareto front in parameter space, which is

defined as the set of solutions representing the optimal

tradeoffs among multiple objectives. The function
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seeks the parameter combination set of solutions

where all the objectives cannot be further optimized

simultaneously. Such solutions are referred to as

Pareto-optimal solutions, and include Pareto optimal

zoning (Ohls et al. 1974) and surrogate worth trade-off

(Das and Haimes 1979). However, the practical

problem is that these optimal tradeoffs are inefficient,

or even impossible, to determine because of the vast

number of possible tradeoffs, especially when dealing

with problems involving a large number of variables

(e.g., land-use optimization, where every land unit is

formulated as a variable). Therefore, heuristic meth-

ods were introduced to make the determination

possible and efficient, such as particle swarm opti-

mization (Masoomi et al. 2013) and genetic algorithms

(Porta et al. 2013).

Among different heuristic methods, the nondomi-

nated sorting genetic algorithm II (NSGA-II, Deb et al.

2002) has been demonstrated to be the most effective

(Song and Chen 2018a). Also, NSGA-II appears to be

the most popular genetic algorithm for optimization,

as it has been cited 31,805 times (according to Google

Scholar on 21 May 2020).

This study focuses on two improved NSGA-II

algorithms for sustainable land-use optimization. One

has been widely applied (Cao et al. 2011), and the

other is the latest improvement (Song and Chen

2018b). The former algorithm has only had limited

validation confirming its general utility in sustainable

land-use optimization. The latter algorithm has only

been evaluated in comparison with the original

NSGA-II algorithm.

We argue that a thorough evaluation is needed for

both of these two algorithms. The evaluation should be

performed using a comprehensive framework, which

is precisely what has been missing in the development

and improvement of Pareto front-based algorithms for

sustainable land-use optimization. In this study, we

aimed to present such a framework. Using this

framework, we then carried out a thorough evaluation

of, and a systematic comparison between, these two

improved NSGA-II algorithms. We expected that the

evaluation results would support the general superi-

ority of the improved Song and Chen (2018b) method.

Furthermore, we identified areas where both algo-

rithms could be further improved, as well as areas of

potential importance to the development of future

Pareto front-based algorithms for sustainable land-use

optimization. We believe that the framework

illustrated here will be useful for comprehensively

evaluating the performance of these future algorithms.

NSGA-II: concepts and procedure

As introduced in the preceding section, NSGA-II is

essentially a genetic algorithm. Therefore, in this

section, we will introduce genetic algorithms and then

NSGA-II.

The genetic algorithm (Holland 1992) mimics

Darwin’s grand idea of evolution by natural selection

to find the optimal solution of a mathematical

function. It is an iterative algorithm and begins from

an initial population of N solutions (also called

candidates or individuals). Then, each candidate is

evaluated in terms of their fitness to the environment,

namely how optimal they are. After that, a new

population is formed by selecting candidates based on

their fitness. This new population (i.e., parent candi-

dates) are allowed to have offspring (i.e., children

candidates) by crossover and mutation, which com-

bine characteristics of the parents’ model parameters

and mimic the role of genetic mutation in natural

selection, respectively. Typically, each pair of parent

candidates generate two children candidates, making

the total number of children candidates equal to N.

Finally, the population of children candidates replaces

the original population. In summary, the main loop of

a genetic algorithm involves three steps: selection,

crossover, and mutation, as shown in Fig. 1a.

NSGA-II improved this main loop to be Fig. 1b.

The highlight is that there are two selections. The first

selection works with crossover and mutation, making

one population (Pt) evolve to another (Qt). The second

selection identifies the elitist candidates among the

combined population of Pt and Qt according to two

criteria, namely domination (measured by nondomi-

nation rank) and crowdedness (measured by crowding

distance). These elitist candidates form the next

generation of Pt, namely Ptþ1 (Fig. 2).

When a NSGA-II algorithm is practically applied,

the final results (i.e., the candidates of the last

generation) are commonly assumed to be the Pareto-

optimal solutions. However, it is essential to note that

depending on the number of iterations, these candi-

dates are not necessarily the true Pareto-optimal

solutions. To avoid ambiguity, the final results are
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referred to as the resultant solutions of an algorithm in

this study.

Two improved NSGA-II algorithms: a theoretical

comparison

Improved NSGA-II algorithm by Cao et al. (2011)

Cao et al. (2011) improved the initialization, cross-

over, and mutation of NSGA-II. Also, they modified

the commonly understood definition of Pareto-optimal

solutions.

Improved initialization

The initial population was created with 90% candi-

dates that are randomly generated land-use maps and

10% candidates that are precisely the current land-use

map. This improves the ability of the algorithm to

converge to plausible results relative to actual land-

scape conditions, which is important given that

landscapes have inertia and ‘‘memory’’ (e.g., Wallin

et al. 1994).

Improved crossover

The crossover was improved by limiting it spatially to

occur between two cells or patches, rather than two

candidates. This is important given the strong spatial

dependence and autocorrelation of geographical pro-

cesses and spatial patterns (Gao et al. 2013). Thus, an

operator called a ‘‘single parent crossover’’ was

introduced in three steps (Fig. 3). The first is to

prepare a template, which is made up of 7 cells that are

randomly selected from a 3� 3 window. Second, two

locations are randomly chosen from a candidate, at

each of which a patch is created using the template.

Third, the two patches are swapped to generate a new

candidate.

Improved mutation

Two new operators were developed: patch cells and

constraint steering. Aimed at maintaining the diversity

of candidates, the patch cells operator involves four

steps (Fig. 4). The first is also to prepare a template of

7 cells. Second, a land-use type is randomly selected as

the ‘‘mutate to’’ type. The third is to employ the

template to create a patch at a randomly selected

Fig. 1 The comparison between an ordinary genetic algorithm (a) and NSGA-II (b)

Fig. 2 The procedure of the second selection in NSGA-II
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location of a candidate. Fourth, if any cell in the patch

has the ‘‘mutate to’’ type, then all cells of the patch

become that type; otherwise, the operator should be

performed again.

The constraint steering operator was designed to

help candidates satisfy the constraints of an optimiza-

tion. This is implemented in two steps. First, a

candidate is evaluated regarding whether the con-

straints are satisfied or not. Second, the land-use types

of a small number of cells of the candidate are changed

to another, to satisfy the constraints.

Modified definition of Pareto-optimal solutions

Cao et al. (2011) introduced a new concept of ‘‘global

Pareto front solutions’’ and used such solutions as the

commonly understood Pareto-optimal solutions (i.e.,

the candidates of the final generation). Specifically,

these ‘‘global Pareto front solutions’’ were obtained

using the following procedure. First, the algorithmwas

performed for 1000 iterations. Second, a ‘‘sampled

global generation’’ was formed by archiving the

candidates of the 1st, 100th, 200th, …, 900th, and

1000th generations. Third, all archived candidates

were divided into two categories according to their

dominance, namely dominated and nondominated.

The second category was the so-called ‘‘global Pareto

front solutions.’’ In this study, these solutions are

referred to as additional resultant solutions to avoid

any ambiguity.

Improved NSGA-II algorithm by Song and Chen

(2018b)

Song and Chen (2018b) also improved the initializa-

tion, crossover, and mutation of NSGA-II, and

produced additional resultant solutions using a new

archiving strategy.

Improved initialization

The initial population is comprised of N candidates

that are at least 70% similar to the current land-use

map, based on cell-wise identity. To generate such a

candidate, 30% cells of the current land-use map are

selected randomly, and then the land-use type of each

selected cell is altered randomly to a different class.

Fig. 3 The procedure of the single parent crossover operator

Fig. 4 Procedure of the patch cells operator
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Improved crossover

An edge cell-based operator was developed for the

crossover (Fig. 5). First, all edge cells of a candidate

are detected. Then, the land-use type of each edge cell

is swapped with the corresponding cell of another

candidate. In particular, such a swap will be skipped if

the edge cell or its counterpart is conserved.

Improved mutation

Two mutation operators were developed: patch-based

and constraint-edge. The former makes a patch more

homogeneous, as shown in Fig. 6. First, a window of

3� 3 cells is randomly selected from a candidate.

Second, seven cells are chosen randomly from the

window to form a patch. Third, the land-use types of

all these seven cells (except for the cells from a

restrictive area, if any) are altered to the dominant

land-use type of the patch.

The constraint-edge operator is available if there is

a constraint on the number of cells of a land-use type.

It is performed on a randomly selected edge cell of a

candidate. If the cell is not from a restrictive area (if

any), the total number of the cells with the same land-

use type will be determined. If this total number

exceeds the upper limit, the land-use type of the

selected edge cell will be altered to another one that is

randomly selected. If this total number falls within the

upper and lower limits, the land-use type will be set as

any of the existing types with equal probability. In

other cases, the land-use type will remain unchanged.

Archiving strategy

The nondominated candidates are archived in all

generations. If the number the archived candidates

exceeds the population size, the candidates with a

smaller crowding distance will be removed. The final

archived candidates are regarded as Pareto-optimal.

Difference between the two improved algorithms

We conducted a theoretical comparison between the

two improved algorithms (Table 1), in terms of

initialization, operators and their effects, and results.

We argue that the crossover operator by Cao et al.

(2011) is actually a mutation operator by definition

(Kozek et al. 1993) because only one parent candidate

is involved.

A comprehensive framework for evaluation

and comparison

In this section, we introduce a framework for evalu-

ating the performance of a Pareto front-based algo-

rithm for sustainable land-use optimization. This

framework consists of principles, criteria, and indica-

tors. These elements form a hierarchy of increasingly

sophisticated conceptions and have been demonstrated

to be fundamental in other comprehensive evaluations

(Bautista et al. 2016; Gao et al. 2019). Here, the

criteria are further classified into macro and micro,

leading to a framework of four hierarchal levels

(Fig. 7).

Fig. 5 Procedure of the edge-crossover operator
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Principle and three macro-criteria

A dictionary definition of principle is ‘‘a fundamental

truth or proposition that serves as the foundation for a

system of belief or behavior or for a chain of

reasoning’’ (Oxford dictionary). Such a proposition

in the context of algorithmically optimizing land use

should be focused on the usability of the algorithm.

Therefore, our principle was determined as follows:

the algorithm is usable for Pareto front-based sustain-

able land-use optimization.

With this principle, we designed three macro-

criteria according to usability. The International

Organization for Standardization (ISO) defines usabil-

ity as ‘‘the extent to which a product can be used by

specified users to achieve specified goals’’ (ISO 2008,

p. 2) and should be evaluated against three criteria.

The first is effectiveness, which means the ‘‘accuracy

and completeness with which users achieve specified

goals’’ (ISO 2008, p. 2). The second is efficiency,

namely the ‘‘resources expended in relation to the

accuracy and completeness with which users achieve

goals’’ (ISO 2008, p. 2). The third is satisfaction,

which deals with the ‘‘freedom from discomfort, and

positive attitudes towards the use of the product’’ (ISO

2008, p. 2). Here, these three criteria were refined in

the context of Pareto front-based sustainable land-use

optimization, leading to three macro-criteria:

• Effectiveness: the capability to determine the

Pareto front.

• Efficiency: the resources expended to determine

the Pareto front.

• Satisfaction: the solutions’ goodness from the

perspective of users.

Micro-criteria of each macro-criterion

Effectiveness has been defined as the capability to

accurately determine the Pareto front, but there are

two practical issues with this determination. First, the

results of an optimization algorithm are not necessar-

ily Pareto-soptimal because of the limited number of

iterations (i.e., generations). Second, even if all the

Fig. 6 Procedure of the patch-based-mutation operator

Table 1 A comparison between the two improved algorithms

Algorithm Initialization Crossover Mutation Additional results

Operator Effect Operator Effect

Cao et al.

(2011)

90% random

candidates 10%

custom

candidates

None None 1. Single

parent

crossover

2. Patch cells

3. Constraint

steering

Configurational

Compositional

Compositional

Nondominated candidates from

some selected generations

Song and

Chen

(2018b)

Each candidate:

70% random cells

30% custom cells

Edge-

crossover

Compositional 1. Patch-

based

2. Constraint-

edge

Compositional

Compositional

Nondominated candidates (from

each generation) with large

crowding distance
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results are Pareto-optimal, the set of results is not

necessarily the Pareto front because of the limited size

of the population. Thus, we designed the following

two criteria. One is whether the results come from the

Pareto front or not, and the other is whether the results

form a representative sample of the Pareto front or not.

To access representativeness, we suggest employing

the spread of the results over the Pareto front, or, in

other words, the diversity of the results. These two

criteria are defined as the micro-criteria of effective-

ness and referred to as the quality and diversity of the

results, respectively.

Efficiency is the resources expended to determine

the Pareto front. For a computer algorithm, the

resources expended can be specified as computational

costs. Typically, two types of computational costs are

identified, namely time and space (e.g., Zhou et al.

2017). Here, these two types are used as the micro-

criteria of efficiency.

Satisfaction is difficult to specify because the

perspectives of users are subjective and diverse, but

this specification can be achieved here for two reasons.

First, in performing an optimization, users are

expected to have formulated the criteria of their

subjective satisfaction as the objectives (and con-

straints). Second, in general optimization problems

such as finding the maximum value of a mathematical

function, there is not necessarily an initial solution.

Such a solution, however, exists in any sustainable

land-use optimization problems, namely the status quo

of land use. Accordingly, we propose a micro-criterion

for evaluating users’ satisfaction, namely the degree of

optimization achieved by the results when compared

with the status quo of land use. In addition, because

users may set some constraints, we introduce the

degree of violation of constraints as the second micro-

criterion.

Indicators of the micro-criteria

Indicators of effectiveness

Both micro-criteria of effectiveness are dependent on

a Pareto front; however, the Pareto front is unknown in

evaluating an algorithm for sustainable land-use

optimization. Note that such a problem does not exist

in evaluating a general optimization algorithm, where

test functions are typically deliberately designed and

their Pareto fronts are explicitly determined (Yue et al.

2019). In those cases, the quality of results can be

directly evaluated. For example, it was evaluated as

follows in the original paper of NSGA-II (Deb et al.

2002). First, a total of 500 Pareto-optimal solutions

were uniformly sampled from the Pareto front. Then,

the minimum Euclidean distance is calculated in

parameter space between each result and these sam-

pled Pareto-optimal solutions. Last, the average of

these distances was employed as the indicator of

quality. Such a strategy does not apply to our case.

Therefore, we proposed a Pareto front-parameter-

less indicator of quality. The core idea is that since the

end point of optimization (i.e., the Pareto front) is

unknown, we employ the start point as an alternative.

Instead of evaluating how close the results are to the

Pareto front, we evaluate how much the results

improve from the initial solutions, as follows:

Fig. 7 The proposed four-level framework for evaluation and comparison

123

Landscape Ecol



Q ¼
Xm

s¼1

cs

Pn0

b¼1

fsðYbÞ
�
n0

Pn

a¼1

fsðXaÞ=n
� 1

0

BBB@

1

CCCA ð1Þ

where Q is the indicator of quality, and m is the

number of objectives. cs is a coefficient; it equals 1

when the s th objective is maximization and -1 with

minimization. n and n0 are the numbers of feasible

solutions in the initial population and that in the

results, respectively. Xa denotes the a th feasible

solution in the initial population, Yb denotes the b th

feasible solution in the results, and f s �ð Þ returns the s th
objective function value (OFV) of Xa or Yb. The value

of Q can be explained as the sum of the average

improvements towards all objectives. The greater Q,

the better quality of results.

This indicator Q is different from a popular

indicator called average rank index (ARI; e.g., Duh

and Brown 2007; Song and Chen 2018b), which is

calculated in three steps. First, the results of an

optimization algorithm are pooled with that of another

optimization algorithm. Second, the nondomination

rank of each solution from this pool is calculated using

the fast nondominated sorting approach (Deb et al.

2002). Third, the average nondomination rank of the

results of the optimization algorithm in question is

calculated and used as the ARI. As a result, ARI has

two problems. First, its value depends on the bench-

mark algorithm. Second, the effects of initial solutions

are not considered. By contrast, Q is an independent

indicator, and its value is relative to the quality of

initial solutions. Therefore, Q reflects the true capa-

bility of an optimization algorithm.

To quantify diversity, we propose to employ the

popular measure from information theory, namely

Shannon entropy (Vranken et al. 2015). Its (H)

formula is as follows:

H ¼ �
Xh

i¼1

Pi � log2Pi ð2Þ

where h is the total number of cases, and Pi is the

probability of each case. Here, we first calculate the Pi

of a result as the proportion of one OFV of a result to

the total values of all results towards that objective.

Accordingly, the value of H is inversely proportional

to the diversity towards that objective. Then, our

indicator of diversity (D) is calculated as the sum of

the decreases in H by the results towards each

objective, as follows:

D ¼
Pm

s¼1

1 �

Pn0

b¼1

Pb � log2 Pb
�
log2 n

0

Pn

a¼1

Pa � log2 Pa=log2 n

0

BBB@

1

CCCA

Pa ¼ fs ðXaÞ
�Pn

a¼1

fs ðXaÞ

Pb ¼ fs ðYbÞ
,
Pn0

b¼1

fs ðYbÞ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð3Þ

D is proportional to the degree of disversity, where a

positive value indicates that diversity is improved,

whereas a negative value means that diversity is

worsened.

The proposed D has advantages over existing

indicators of diversity. In comparison to the diversity

indicator used in the original paper of NSGA-II (Deb

et al. 2002), D tends to be more universally applicable

as it does not require any prior knowledge of the Pareto

front. In addition,D is capable of quantifying diversity

globally and thus can be referred to as a global

indicator of diversity. By contrast, the indicator of

diversity used by Song and Chen (2018b) quantifies

only local diversity because it is calculated as the

average of crowding distances, where a crowding

distance is measured using two neighbors of a result.

Furthermore, D is also capable of reflecting the true

capability of an optimization algorithm.

Indicators of efficiency

The indicator of time cost (T) is proposed as the

executive time of an optimization algorithm operated

on a general personal computer. The operating envi-

ronment is emphasized because most users work with

personal computers rather than enterprise computing

resources. The executive time is used, rather than time

complexity, because it is more intuitive for users in

estimating time cost with their operating environment.

The indicator of space cost is proposed as the

amount of working storage, which is a widely used

indicator in evaluating a general algorithm. Here, we

also proposed a novel indicator (R) designed for the

improved NSGA-II algorithms employing an archiv-

ing strategy, the ratio of the total number of addition-

ally archived solutions (from which the additional
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resultant solutions are selected) to the number of

solutions in an iteration (i.e., to the population size).

The smaller this ratio is, the less amount of working

storage required. The ideal value of this ratio is zero,

which has been achieved by the original NAGA-II

algorithm.

Two advantages can be expected by using the

proposed ratio. First, it is easy to calculate. Second, it

is more interpretable because it is directly related to

the most memory-consuming part of an optimization

algorithm, namely retrieving and handling every land-

use map. Note that a single map for a small region is

probably highly memory-consuming because it may

contain millions of values. For example, the land-use

map with a spatial resolution of 30 m for the Lhasa

City, China contains as many as 60,494,994 values and

requires 220 MB memory.

Indicators of satisfaction

We proposed two indicators to evaluate the two micro-

criteria for satisfaction, respectively. The indicator of

the degree of optimization (O) was proposed as

follows:

O ¼ max
b

Xm

s¼1

cs
f s Yb
� �

f s Zð Þ � 1

� � !
ð4Þ

where Z denotes the current land-use map. This

indicator quantifies the maximum degree of optimiza-

tion achieved by the results when compared with Z. To

the best of our knowledge, O is the first indicator of

satisfaction concerning the degree of optimization. It

can be used in optimization problems consisting of

either maximizing or minimizing functions, or both.

The average degree of optimization is not used

because (a) such property has been characterized by

Q and (b) usually only one result is used as the future

land-use planning.

In developing an indicator for the degree of the

violation of constraints, we did not distinguish equal-

ity constraints from inequality ones. In essence, all

equality constraints can be regarded as inequality ones

using the following formula:

c0 �C0ð�Þ � c0;

where C0(�)denotes the function of an inequality

constraint, and c0 is the function value. Accordingly,

the proposed indicator of violation (V) is expressed as

follows:

V ¼ 1

n
0 0

Xn0 0

b¼1

XK

k¼1

max
Ck Y

0

b

� 	
� cuk

cuk


 

 ;

clk � Ck Y
0

b

� 	

clk


 

 ; 0

8
<

:

9
=

;

ð5Þ

where n00 is the number of results, and Y
0

b is the b th

result. K is the total number of constraints, Ck �ð Þ
denotes the function of the k th constraint, and cuk and

clk are the upper and lower limits of the k th constraint,

respectively.

Experimental evaluation and comparison

Datasets, objectives, and constraints

The study area is the city of Lhasa, which is the capital,

largest, and most urbanized city of the Tibet

Autonomous Region (a provincial-level administra-

tive region) of China. It is located in an area known as

the ‘‘Lhasa Valley’’ along the southern edge of the

Tibetan plateau (or Qinghai–Tibet Plateau), which is

known as ‘‘The Third Pole’’ (also ‘‘Roof of the

World’’) and plays a vital role in global climate change

(Qiu 2008; Kuang 2020). Lhasa and Tibet have

witnessed an expansion of industrialization, urbaniza-

tion, and tourism since the implementation of the

western development strategy by China in 2000

(Huang et al. 2013; Zhao et al. 2015) and the

construction of the Qinghai-Tibet railway in 2005

(Duo et al. 2015). However, there are five critical

problems with the land use of Tibet according to the

Government of the Tibet Autonomous Region (2011),

namely low utilization, very limited cultivated land,

low resistance to natural hazards, the unreasonable

structure of different land-use types, and a heavy

trade-off between land use and economic develop-

ment. One key to partly solve these problems is Lhasa,

where the trade-off is the most prominent between

nature and socio-economic development.

Three datasets were prepared for experiments. The

first dataset is the 2018 land-use map of Lhasa with a

spatial resolution of 1 km (Kuang 2019), as shown in

Fig. 8. According to this map, the dominant type of

land use is grassland (55.1%), followed by barren land

(i.e., unused; 22.4%) and forest (11.9%). The other
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two datasets were the ecological and economic

benefits of different land-use types per square kilo-

meter, as shown in Table 2. Both datasets were

generated in the current study. The ecological benefits

were assessed based on the evaluation of a selection of

nine ecosystem services in Lhasa (Hou et al. 2011),

namely air purification, climate regulation, water

conservation, soil formation and protection, waste

disposal, biodiversity conservation, food production,

raw materials, and entertainment and culture. These

nine ecosystem services were chosen based on their

widely recognized importance at a regional scale (e.g.,

Su et al. 2012; Peng et al. 2019; Zhang et al. 2019).

The economic benefits were assessed based on the

gross domestic product (GDP) of Lhasa and the

relative weights of different land-use types to GDP.

The GDP data were collected from the statistical

yearbook. The relative weights were determined using

the analytic hierarchy process (Kulczyk et al. 2017)

with seven criteria: elevation, slope, mean annual

precipitation, normalized difference vegetation index,

population density, per capita GDP, and distance to the

nearest road.

We established three objectives and three con-

straints. These three objectives are to maximize the

ecological benefits, the economic benefits, and the

spatial compactness. The first two objectives are

generally conflicting, as shown in Table 2. The third

objective was introduced from the perspective of

urban planning, where the spatial compactness was

evaluated according to Shaygan et al. (2014; Eq. 8).

The first constraint was that cells of type ‘‘waterbody’’

were preserved in optimization. The second constraint

was established according to the early instructions of

the Central Government of China (2014) to Lhasa to

protect cultivated land strictly; that is, the area of

cultivated land should not be reduced. The third

constraint was that the proportion of altered cells is not

greater than 30%.

Algorithms and evaluated solutions

We evaluated the two improved NSGA-II algorithms

and their modified versions by us. The modified

versions were obtained by removing the archiving

strategies, to evaluate the real usability of these

algorithms for sustainable land-use optimization.

As a result, we carried out a total of four experi-

ments, leading to four sets of optimization results for

evaluation and comparison, as shown in Table 3. In all

experiments, the population size was set as 50 and the

number of generations as 1000. The constraints were

handled using the constrained-domination principle by

Deb et al. (2002). In the first experiment, the

candidates of the 1st, 100th, 200th, …, 900th, and

1,000th generations were archived.

Results and analysis

The operating environment for all experiments is a

personal computer equipped with Intel Core i7–6500U

Fig. 8 The land-use map of the Lhasa city in 2018 (spatial resolution is 1 km)
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CPU @ 2.50 GHz 2.59 GHz, 8.00 GB RAM, and

64-bit Windows 10. The indicators calculated with

each experiment are listed in Table 4.

A comparison in the indicators between OC and OS

reveals the following findings. OC is better than OS in

terms of the quality of results (Q) and time cost (T).

However, OS outperforms OC in terms of the diversity

of results (D), space cost (R), and the degree of

optimization (O). Both algorithms exhibited excellent

performance in the violation of constraints (V).

Similar findings can be obtained by making a

comparison between MC and MS.

A comparison between the original and revised

versions (i.e., OC and MC) of the algorithm by Cao

et al. (2011) suggests that the archiving strategy has

limited effect on the quality (Q), diversity (D), time

(T), and violation (V). The changes in Q, D, T , and V

from MC to OC are 8%, 4%, - 6%, and 0, respec-

tively. By contrast, the effect of the archiving strategy

on O and R is noticeable. The improvement in O is as

high as 24% from MC to OC, demonstrating the

necessity of archiving. However, this improvement

was achieved at the expense of more space resources,

as shown by the increase in R.

A comparison between OS and MS demonstrates

that the archiving strategy has little effect on O

(increased by 2%) and T (decreased by 1%). However,

the quality of results (Q) was decreased by 23% after

adopting the archiving strategy. This fact indicates

little need to apply the archiving strategy, although the

diversity of results (D) was increased by 27%.

Table 2 Ecological and economic benefits (US dollars per square kilometer) of different land-use types in Lhasa: cultivated land,

forest, grassland, waterbody, construction, and unused

Cu Fo Gr Wa Co Un

Ecological 6:25� 104 1:92� 105 5:02� 104 5:81� 105 0 5:31� 103

Economic 1:44� 106 3:29� 105 6:06� 104 1:56� 106 9:85� 106 0

Table 3 The algorithm and optimization results of each experiment

Experiment Algorithm Optimization results

1 OC: Original algorithm of Cao et al. (2011) Additional resultant solutions

2 OS: Original algorithm of Song and Chen (2018b) Additional resultant solutions

3 MC: Modified algorithm of Cao et al. (2011) Resultant solutions

4 MS: Modified algorithm of Song and Chen (2018b) Resultant solutions

Table 4 Algorithm performance against each criterion, where ‘‘OC’’ and ‘‘MC’’ denote the original and modified algorithms of Cao

et al. (2011), respectively, and ‘‘OS’’ and ‘‘MS’’ denote the original and modified algorithms of Song and Chen (2018b), respectively

Criterion Indicator OC OS MC MS

Macro Micro

Effectiveness Quality Q 0.27 0.13 0.25 0.17

Diversity D 1:72� 10�3 2:89� 10�3 1:66� 10�3 2:77� 10�3

Efficiency Time T 4:51:46 7:21:48 5:10:58 7:25:24

Space R 10 1 0 0

Satisfaction Optimization O 0.55 3.17 0.44 3.12

Violation V 0 0 0 0
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Discussion

To illustrate some optimized land-use plans, we

showed the results with the highest degree of opti-

mization (O) from each algorithm (Fig. 9). Intuitively,

the optimized land-use plan produced by OC appears

to be the most acceptable because it seems to be more

spatially compact than the others. This fact can be

confirmed by a comparison among the OFVs of these

land-use plans towards Objective 3 (spatial compact-

ness). As shown in Table 5, the spatial compactness

(OFV 3) of OC is the highest among the four land-use

plans. On the other hand, it is important to note that

OC has clearly low OFVs 1 and 2. Therefore, it is

difficult to conclude that OC produced the best land-

use plan. In fact, all results of these four algorithms,

including the four shown in Fig. 9, are among the best

land-use plans according to the given objectives and

constraints, or, more technically, among the Pareto-

optimal solutions where one OFV cannot be further

improved without worsening the other OFVs.

As a result, in practically applying these algorithms,

decision-makers may wonder how to select one

solution as the future land-use plan from a large

number of Pareto-optimal solutions. This question is

independent of the capability of a NSGA-II algorithm

to find the Pareto-optimal solutions and concerns the

post-processing of results. To answer this question,

one usually considers average and extreme solutions.

For example, in their post-processing, Cao et al.

(2011) selected a solution with the highest average

OFV towards all three objectives and three solutions

with the highest OFV towards each single objective.

Similar strategies were adopted by Song and Chen

(2018b) in the post-processing.

Our suggestion for practical applications of a

NSGA-II algorithm is that the objectives and con-

straints of optimization should be carefully designed.

This is somewhat tricky because, as previously noted

in ‘‘Micro-criteria of each macro-criterion’’ Section, it

means to model the expectations of decision-makers.

To this end, such a design should be constantly tested

Fig. 9 Land-use plans with the highest degree of optimization

(O) by each algorithm, where ‘‘OC’’ and ‘‘MC’’ denote the

original and modified algorithms of Cao et al. (2011),

respectively, and ‘‘OS’’ and ‘‘MS’’ denote the original and

modified algorithms of Song and Chen (2018b), respectively
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and improved. Also, we recommend two approaches

for the post-processing of results. One is to model the

changes of future land use based on Pareto-optimal

solutions and then select Pareto-optimal solutions

through an analysis of their long-term impacts on

future ecosystem services. Similar work was per-

formed by Bai et al. (2018). The other was proposed by

Karakostas (2017) to analyze the frequency of land-

use types in each available map cell of the Pareto-

optimal solutions.

Conclusions

NSGA-II is the most popular method for algorithmi-

cally optimizing land use towards sustainable devel-

opment. Its latest applications in landscape ecology

include exploring the sustainable trade-offs of refuge

expansion in constrained landscapes (Liberati et al.

2019). In this study, we compared the performance of

two improved NSGA-II algorithms for sustainable

land-use optimization. One algorithm is the most

popular version, and the other is the latest version.

This comparison is the first of its kind, and it was

carried out both theoretically and experimentally. In

the theoretical aspect, the differences between the two

versions were systematically analyzed in terms of

initialization, crossover, mutation, and archiving

strategy. In the experimental aspect, we developed

an evaluation framework of four hierarchal levels. To

the best of our knowledge, it is the first comprehensive

framework for such evaluations. From the results, we

can draw two major conclusions:

• The proposed framework facilitates both a com-

prehensive evaluation of an NSGA-II algorithm for

sustainable land-use optimization and systematic

comparison between two algorithms. Indeed, the

framework applies not only to NSGA-II algorithms

but also all Pareto front-based algorithms for

sustainable land-use optimization.

• Each of the two improved NSGA-II algorithms has

its advantages. The algorithm by Cao et al. (2011)

outperformed that by Song and Chen (2018b) in

terms of the quality of results and the time cost,

whereas the latter algorithm outperformed the

former one in terms of the diversity of results, the

space cost, and the degree of optimization. Also,

there is little need to apply the archiving strategy to

the latter algorithm. Both algorithms can be further

improved according to the experimental results.

Future research is recommended in two areas. The

first is to further improve the usability of NSGA-II

algorithms for sustainable land-use planning. Ideas

from landscape ecology studies can be borrowed, such

as scale optimization, movement, and gene flow (e.g.,

Cushman and Lewis 2010; McGarigal et al. 2016;

Wan et al. 2019). Specifically, we suggest using a

patch template of different sizes for crossover/muta-

tion and controlling the distance between two patches

in the single parent crossover. The effects can be

evaluated using the proposed evaluation framework.

The second is to apply evaluated optimization algo-

rithms in landscape ecology. For example, to develop

a sustainable landscape architecture (Chen and Wu

2009; Liu et al. 2020), one needs to spatially arrange

land resources and ground objects. The optimal

arrangement can be achieved by using these

algorithms.
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