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Fine particulate matter (PM2.5) pollution is becoming an increasing global concern due to rapid urbanization and
socioeconomic development, especially in North China. Although North China experiences poor air quality and
high PM2.5 concentrations, their spatial heterogeneity and relationship with the relative spatial risks of air pollu-
tion have not been explored. Therefore, in this study, the temporal variation trends (slope values) of the PM2.5

concentrations in North China from 2000 to 2017 were first quantified using the unitary linear regression
model, and the Bayesian space-time hierarchy model was introduced to characterize their spatiotemporal het-
erogeneity. The spatial lag model was then used to examine the determinant power of urbanization and other
socioeconomic factors. Additionally, the correlation between the spatial relative risks (probability of a region be-
comingmore/less polluted relative to the average PM2.5 concentrations of the study area), and the temporal var-
iation trends of the PM2.5 concentrationswere quantified using the bivariate local indicators of spatial association
model. The results showed that the PM2.5 concentrations increased during 2000–2017, and peaked in 2007 and
2013. Spatially, the cities at high risk of PM2.5 pollution were mainly clustered in southeastern Hebei, northern
Henan, and western Shandong where the slope values were low, as demonstrated by the value of Moran's I
(−0.56). Moreover, urbanization and road density were both positively correlated with PM2.5 pollution, while
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the proportion of tertiary industry was negatively correlated. Furthermore, a notable increasing trend was ob-
served in some cities, such as Tianjin, Zaozhuang, Qingdao, and Xinyang. These findings can contribute to the de-
velopment of effective policies from the perspective of rapid urbanization to relieve and reduce PM2.5 pollution.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In recent decades, rapid globalization and urbanization have
greatly impacted environmental and socioeconomic conditions
worldwide, and are closely related to air quality and human health
(Wang et al., 2018a; Wang et al., 2018b; Hoek et al., 2013). PM2.5 is
classified as airborne particulate matter smaller than 2.5 μm (Prada
et al., 2017), and high PM2.5 concentrations can decrease atmo-
spheric visibility, influence the radiation balance and negatively im-
pact the climate (Wang and Fang, 2016), and incerease morbidity,
hospitalization, and mortality due to respiratory diseases
(Franchini et al., 2016), cardiovascular diseases (Peng et al., 2008),
and cancer (Di Lorenzo et al., 2015).

Air pollution is aggravated by rapid urbanization and the growth of
urban agglomerations, which are occurring in many countries world-
wide. The level and speed of urbanization significantly differ between
different countries, regions, and cities, resulting in spatiotemporal het-
erogeneity in the PM2.5 concentrations. Different regions across China
are under different stages of urbanization, and most cities are
experiencing varying degrees of haze pollution (Wang and Fang,
2016). Furthermore, China faces the highest number ofmortalities asso-
ciated with air pollution worldwide (Li et al., 2018; World Health
Organization, 2016). Accordingly, the association between urbanization
and PM2.5 pollution in China must be understood to aid in the develop-
ment of policies to decrease air pollution and achieve sustainable
development.

Most previous studies on PM2.5 were conducted under the natural
sciences field (Onat and Stakeeva, 2013; Pateraki et al., 2012). How-
ever, numerous studies have demonstrated that, in addition to natu-
ral conditions, anthropogenic social and economic activities also
influence the generation and spread of PM2.5 pollution. For example,
economic development, industrial structures, soot emissions, popu-
lation density, traffic intensity, foreign direct investment, and coal
consumption are major emission sources of PM2.5 (Cheng et al.,
2017; Lin et al., 2014; Liu et al., 2019; Luo et al., 2018; Wu et al.,
2018; Xie et al., 2020). Cities are the spatial containers of these emis-
sions, and the urbanization process involves various socioeconomic
factors that directly generate PM2.5 pollution, thereby further affect-
ing the PM2.5 concentrations in the atmosphere (Zhu et al., 2019;
Zhang et al., 2019). For examples, Yang et al. (2018) found that
road density had a high determinant power on the PM2.5 concentra-
tions, and Wang et al. (2019) demonstrated that population density
enhances PM2.5 pollution. Similarly, Zhu et al. (2019) demonstrated
that the PM2.5 concentrations in urban areas were higher than
those in surrounding areas, indicating that urbanization plays an im-
portant role in the PM2.5 concentrations. Furthermore, the Ministry
of Environmental Protection of China reported that, in 2015, the air
qualities of Baoding, Tangshan, Hengshui, Xingtai, Handan, Langfang,
Shijiazhuang, Zhengzhou, Jinan, and Shenyang were the worst (Yan
et al., 2018). Excluding Shenyang, all of these cities are located in
North China, where the problem of PM2.5 pollution cannot be
overlooked. Therefore, studying the temporal evolution and spatial
heterogeneity of PM2.5 pollution in North China will deepen our un-
derstanding of the characteristics of air pollution, assist in urbaniza-
tion policy making, and ensure that targeted control measures are
implemented.

To our best knowledge, few researchers have examined the spa-
tiotemporal heterogeneity of PM2.5 concentrations in North China
region and quantified the correlation between the spatial relative
risks and the temporal variation trends of PM2.5 concentrations.
Therefore, the aims of this study were to (1) investigate the spatio-
temporal heterogeneity of PM2.5 pollution risk from 2000 to 2017
in North China region from a regional perspective, (2) examine the
correlation between the spatial relative risks and the temporal vari-
ation trends of the PM2.5 concentrations, and (3) quantify the rela-
tionships between urbanization or other socioeconomic factors and
PM2.5 concentrations.

2. Methods

2.1. Study area

North China was taken as the study region in this work, which in-
cludes the provinces of Hebei, Henan, and Shandong, and 48 cities in
total including Beijing and Tianjin (Fig. 1). There is clear socioeconomic
disparity between the cities in the study area. The economies of most
cities in southern Henan and southwestern Shandong are underdevel-
oped, while the core area of North China region comprising most of
the cities in Beijing-Tianjin-Hebei, is one of the most densely populated
and economically advanced regions of China. This resulted in remark-
able spatiotemporal heterogeneity in both urbanization and PM2.5 con-
centrations. Regional variations in urbanization may impact the spatial
pattern of PM2.5 concentrations and their temporal evolution. Accord-
ingly, this study focused on the effects of the evolution of urbanization
on the PM2.5 concentrations in this area.

2.2. Data sources

The remotely sensed PM2.5 concentrations data from 2000 to 2017
analyzed in this study were obtained from the Atmospheric Composi-
tion Analysis Group of Dalhousie University (http://fizz.phys.dal.ca/
~atmos/martin/), which has a spatial resolution of 0.1° × 0.1°. The data
were calculated based on the aerosol optical depth, whichwas retrieved
from the NASA, MISR, MODIS, and SeaWiFS instruments combinedwith
the atmospheric chemical model, and calibrated with the monitored
PM2.5 concentrations. This dataset has great accuracy as it has been
corrected with global station-based observation values based on the
geographically weighted regression model, with an R2 value of 0.817
(Van Donkelaar et al., 2016), and has been used in many studies (Van
Donkelaar et al., 2015; Pinault et al., 2016; Lu et al., 2018). The annual
mean PM2.5 concentrations of each city in the study area during
2000–2017 were then extracted using the zonal statistics tool in the
ArcGIS10.3 software based on the average values of the raster in each
city (Fig. 2).

Based on previous studies, the explanatory variables used this study
for the same period were acquired from China's city and governmental
economic statistical yearbooks of Beijing, Tianjin, Hebei, Henan and
Shandong, which included the non-agricultural proportion of the popu-
lation (UR), per capita gross domestic product (GDP), industrial output
(IO), proportion of secondary industry (PS), proportion of tertiary in-
dustry (PT), and road density (RD). The UR is a traditional and com-
monly used proxy to represent urbanization, and has been widely
discussed in many previous studies (Han et al., 2014; Shen et al.,
2017; Wang et al., 2018a; Wang et al., 2018b). The road data used in
this work were gathered from Open Street Map (https://www.
openstreetmap.org), including multistage highways and urban roads,
and the RD was then extracted using “line density” in the spatial analy-
sis tools of ArcGIS 10.3.

http://fizz.phys.dal.ca/~atmos/martin/
http://fizz.phys.dal.ca/~atmos/martin/
https://www.openstreetmap.org
https://www.openstreetmap.org


Fig. 1. Geographic location of the study area. Note: CD: Chengde city; ZJK: Zhangjiakou; BJ: Beijing; LF: Langfang; TS: Tangshan; QHD: Qinhuangdao; BD: Baoding; TJ: Tianjin; CZ:
Cangzhou; SJZ: Shijiazhuang; HS: Hengshui; XT: Xingtai; HD: Handan; DZ: Dezhou; BZ: Binzhou; DY: Dongying; YT: Yantai; WH: Weihai; JN: Jinan; ZB: Zibo; WF: Weifang; QD:
Qingdao; LC: Liaocheng; LW: Laiwu; TA: Taian; HZ: Heze; JNI: Jining; ZZ: Zaozhuang; LYI: Linyi; RZ: Rizhao; AY: Anyang; HB: Hebi; PY: Puyang; XX: Xinxiang; JY: Jiyuan; JZ: Jiaozuo;
SMX: Sanmenxia; LY: Luoyang; ZZH: Zhengzhou; KF: Kaifeng; SQ: Shangqiu; XC: Xuchang; PDS: Pingdingshan; LH: Luohe; ZK: Zhoukou; NY: Nanyang; ZMD: Zhumadian; XY: Xinyang.
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2.3. Statistical analysis

The unitary linear regression model was first used to reveal the lin-
ear relationship between the PM2.5 concentrations and time, where
the fitted coefficients (slope values) represented the temporal variation
trends within the selected period. The larger the absolute value of the
slope, the stronger the increasing/decreasing temporal trend (Yang
et al., 2020), with positive slope values indicating an increasing trend
over time. This is a common analysis method, thus, the formula can
be found in previous studies (Yang et al., 2018). The Bayesian
space-time hierarchy model (BSTHM) was then used to investigate
the spatiotemporal heterogeneity of PM2.5 pollution and identify
high- and low-risk cities in the study area. The local indicators of spa-
tial association (LISA) model was then introduced to determine the
correlation between the spatial relative risks of PM2.5 concentrations
and their temporal variations. Finally, the spatial lag model (SLM)
was used to quantify the association between urbanization or other
socioeconomic factors and the PM2.5 concentrations.

2.3.1. Bayesian spatiotemporal hierarchy model
The BSTHM (Li et al., 2014) is a novel statistical model for exploring

spatial patterns and temporal evolution in data, and has been widely



Fig. 2. Spatiotemporal distribution of the annual average PM2.5 concentrations from 2000 to 2017 in North China.
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used in epidemiology, atmospheric science, and geography (Zhang
et al., 2020; Li et al., 2018; Kang et al., 2019; Zhang et al., 2018;
Barboza, 2019). This method can capture the most representative spa-
tiotemporal patterns of raw data. Additionally, it can also solve prob-
lems of sample bias and ensure accurate and stable results, and is thus
more informative than traditional spatiotemporal technologies.
The PM2.5 data from 2000 to 2017 for 48 cities were used as the spa-
tiotemporal data in the study, and the correspondingmathematical def-
inition was as follows:

yit � N uit ;σ2
y

� �
ð1Þ
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log uitð Þ ¼ α þ si þ b0t� þ vtð Þ þ b1it� þ εit ð2Þ

where yit is the annual average PM2.5 concentrations of the cities i (i=1,
2,…, 48) in year t (t=1, 2,…, 18), uit is the mean parameter of the raw
data's likely distribution and represents the potential pollution risk, σy

2 is
the variance of the corresponding normal distribution, andα is used to in-
dicate the fixed effect of the pollution risk in North China during
2000–2017. The spatial term si describes the spatial heterogeneity of the
pollution risk during the selected period. Similarly, (b0t⁎ + vt) denotes
the overall temporal variations of the pollution risk, while t⁎ expresses
the temporal span for themiddle time point, and b1i reveals the deviation
from b0, representing the local temporal trend. Finally, εit ~ N (0, σε

2) de-
notes the Gaussian noise (Gelman, 2006). All the BSTHM calculations in
this study were conducted usingWinBUGS 1.4, which was designed spe-
cifically for Bayesian research (Lunn et al., 2000).

2.3.2. Bivariate spatial correlation
The bivariate LISA model was developed from the spatial correlation

analysis to not only quantify the local spatial correlation, but to also deter-
mine the class of spatial correlation between two studied subjects, includ-
ing the spatial relative risks and temporal variation trends (Anselin et al.,
2002). The local Moran's Imodel can be explained as follows:

Iikl ¼ Zi
k

Xn

j¼l

WijZ
i
l ð3Þ

Zi
k ¼

xik−xk
σk

; Zi
l ¼

xj
l−xl
σ l

ð4Þ

where the spatial weight matrix is represented byWij, and xk
i and xl

j are
the values of variables k and l at locations i and j, respectively.σk andσl a
represent the variations in xk and xl, respectively.

Zi
kand the corresponding spatial lag WZi

l at location i are presented
on the vertical and horizontal axes of Moran's I scatter plot, respectively
(Anselin et al., 2002). The spatial correlation is then divided into four
quadrants by the two-coordinate axis, with thefirst and third quadrants
indicating positive spatial correlation, and the second and fourth quad-
rants representing negative spatial correlation. The quadrants were cat-
egorized as “High-High (HH),” “Low-Low (LL),” “High-Low (HL),” and
“Low-High (LH).” The LISA processes were conducted using GeoDa.

2.3.3. Spatial lag model
Socioeconomic variables, such as the local economic environment,

population conditions, and traffic identify, greatly influence the concen-
trations of PM2.5. In this study, the SLMwas used to quantify the impacts
Fig. 3. The temporal relative risks (exp (b0t⁎ + vt)) and temporal evolutio
of urbanization or other socioeconomic factors on the PM2.5 concentra-
tions, as follows:

yi ¼ ρWyi þ Xβþ φ ð5Þ

where ρ is the coefficient of the response variable being analyzed,with a
value ranging from 0 to 1; if the value is closer to 1, the response vari-
ables in the adjacent spatial statistical units aremore similar. The spatial
adjacent matrix, signified by W, indicates whether two spatial units
share a common boundary; the diagonal entries ofW are given a value
of zero and non-diagonal entries are given a value of 1, andβ represents
the regression coefficient of the explanatory variables, which are repre-
sented by X and include all of the introduced socioeconomic factors.
Finally, φ indicates the error term.

3. Results

3.1. Temporal characteristic of PM2.5 concentrations in different regions

Both the temporal evolution of the average PM2.5 concentrations and
the temporal relative risks in the study area from 2000 to 2017 were cal-
culated to determine their temporal variations (Fig. 3). Geographically,
the PM2.5 concentrations were greater in Tianjin and Henan from 2000
to 2007. In contrast, they were relatively low in Beijing and Shandong.
The temporal relative risks were consistent with the average value of
each city (Beijing and Tianjin)/province, with the peak values occurring
in 2007 and 2013, respectively, and followed an overall increasing
trend. Both temporal variations and regional differences were observed.
In 2000, the mean PM2.5 concentrations were 28.24, 42.30, 42.80, 60.59,
and 38.48 μg/m3 in Beijing, Tianjin, Hebei, Henan, and Shandong, respec-
tively. In the Beijing-Tianjin-Hebei region, the PM2.5 concentrations all in-
creased until 2006, with peak values of 58.47, 84.66, and 73.50 μg/m3,
respectively, but subsequently decreased from 2007 to 2012, and have
fluctuated interannually since 2013. In Henan and Shandong Provinces,
the PM2.5 concentrations clearly increased before 2007 and reachedmax-
imum levels of 84.59 and 73.13 μg/m3, respectively, before decreasing
from 2007 to 2012, with interannual fluctuations thereafter.

3.2. Spatial patterns and temporal variations in the PM2.5 concentrations
risks

The PM2.5 pollution risk in the 48 cities from 2000 to 2017 was ex-
tracted using the BSTHM. The temporal variation trends of the PM2.5

concentrationswere then extracted for each city using unitary linear re-
gression, as shown in Fig. 4. The risk of PM2.5 pollution was relatively
high in cities located in southeastern Hebei, northern Henan, and
n of the PM2.5 concentrations in different regions during 2000–2017.



Fig. 4. Spatial relative risks (exp (si)) and temporal variation trends (slope values) of the PM2.5 concentrations in each city of North China. Note: All of the slope values are positive and
significant at the 5% level (p b 0.05), indicating a significant increasing trend in which the height of the columns represents the magnitude of the slope values of each city.
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western Shandong, while it was relatively low in cities located in north-
ern Hebei, southern Henan, and eastern Shandong. Generally, the spa-
tial heterogeneity of the PM2.5 concentrations indicated that the risk of
PM2.5 pollution was higher in central cities than that in the peripheral
cities in North China. The slope values of the PM2.5 concentrations dem-
onstrated that increasing trends occurred for each city as theywere pos-
itive, but differed between cities. The PM2.5 concentrations followed a
significantly increasing trend in most of the cities in Hebei, particularly
in Chengde and Zhangjiakou.
The LISA model was subsequently used to calculate the association
between the spatial relative risks and temporal variation trends,
which was thenmapped to reveal the types of their spatial associations
(Fig. 5). TheMoran's I (−0.56) values indicated that increasing trends in
higher-risk areaswere lower. As shown in Fig. 5, both the spatial relative
risks and slope values of the PM2.5 concentrationswere higher in Tianjin
and Zaozhuang; thus, the pollution risk in these cities would likely be
greater in the future than those of other cities in the study area. More-
over, the cities in northern Hebei, southern Henan, and western



Fig. 5. The map of Moran's I scatter plot for the relative risks of spatial and temporal of the PM2.5 concentrations in each city of North China.
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Shandong had lower PM2.5 pollution risk but higher increasing trends,
such as Chengde, Zhangjiakou, Xinyang, and Qingdao, where PM2.5 pol-
lution could bemore dangerous in the future than that in the other cities
of the study area.

3.3. Impact factors analysis

Different socioeconomic conditions may affect the spatiotemporal
heterogeneity of PM2.5 concentrations to varying degrees. The SLM
was used to quantify the associations between the PM2.5 concentrations
and urbanization or other socioeconomic variables, as shown in Table 1.

A positive relationship between urbanization, which was repre-
sented by the UR, and the PM2.5 concentrations (p b 0.05)was observed,
indicating that a high urbanization rate aided in increasing the PM2.5
concentrations (Table 1). RD was also positively associated with the
PM2.5 concentrations (p b 0.01), thereby indicating that high traffic in-
tensity would likely cause an increase in the PM2.5 concentrations
(Table 1).

The PT was significantly and negatively correlated with the PM2.5

concentrations (p b 0.01), indicating that the PM2.5 emissions from cities
at a higher stage of social development would be suppressed (Table 1).
However, the calculated coefficients for the PS, per capita GDP, and IO
were not statistically significant (Table 1).

The results also demonstrated that socioeconomic factors notably
influenced the spatiotemporal heterogeneity of the PM2.5 concentra-
tions, as a statistically significant correlation was observed between
the PM2.5 concentrations and the following socioeconomic factors: ur-
banization, RD, and PT (p b 0.05).



Table 1
The estimated coefficients of socio-economic factors in SLM.

Socio-economic variables Coefficient Std. error z p

Proportion of non-agricultural
population (%)

0.43 0.19 2.26 0.02⁎

Road density (km/km2) 12.55 3.06 4.10 0.00⁎⁎

Proportion of tertiary industry (%) −0.99 0.32 −3.10 0.00⁎⁎

Proportion of second industry (%) −0.34 0.27 −1.27 0.20
Per capita GDP (104 CNY) −7.39 × 10−5 9.51 × 10−5 −0.78 0.44
Industrial output (104 CNY) 7.52 × 10−8 5.69 × 10−8 1.32 0.19

Note: **statistical significance level: 0.01; *statistical significance level: 0.05.
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4. Discussion

PM2.5, a major air pollutant, poses a significant threat to the envi-
ronment and public health worldwide, and has recently attracted in-
creasing attention (Li et al., 2019). As one of the most densely
populated and economically advanced regions in China withmillions
of migrants the PM2.5 concentrations in North China have increased
greatly. In this study, a unitary linear regression model was used to
examine the temporal variation trends of the PM2.5 concentrations
for each city in the region from 2000 to 2017. The BSTHM was then
used to explore the spatiotemporal heterogeneity of the PM2.5 con-
centrations, and the association between the spatial relative risks
and temporal variation treads was quantified using the LISA model.
Additionally, the determinant power of urbanization and other so-
cioeconomic factors to the PM2.5 concentrations was quantified
using the SLM. The results indicated that the areas with the highest
increases were mainly concentrated in the border cities of the
study area, while the high-risk cities were predominantly located
at the center, suggesting that the variation trends for high-risk cities
were lower. Furthermore, urbanization and other socioeconomic
factors played a notable role in the spatiotemporal heterogeneity of
the PM2.5 concentrations.

The temporal evolution of PM2.5 concentrations in North China from
2000 to 2017 was examined. Both the temporal relative risks and con-
centrations of PM2.5 increased across all the cities in the study area dur-
ing the selected years. This may be because China experienced rapid
urbanization in recent decades, especially in the study area, where in-
dustries such as steel and transportation facilities are highly concen-
trated (Zhao et al., 2012). Notably, these industries consume great
volumes of fossil fuels and inevitably produce high emissions. More-
over, during urbanization, the effects of socioeconomic conditions,
such as population concentrations, traffic intensity, and energy con-
sumption, on the city continuously increase. Furthermore, the expan-
sion of cities would also increase the area of surface dust formation
(Lu et al., 2018; Yang et al., 2018).

Urbanization was also significantly and positively related to the
PM2.5 concentrations spatially, indicating that PM2.5 pollution is
more severe in cities undergoing rapid urbanization. Some studies
have also demonstrated that urbanization is positively correlated
with the PM2.5 concentrations. For example, Lu et al. reported a pos-
itive association between urbanization and PM2.5 concentrations (Lu
et al., 2019), and Yang et al. demonstrated that rapid urbanization
would promote the generation and growth of PM2.5 pollution
(Yang et al., 2018). Moreover, Lu et al., also found that urbanization
enhanced the PM2.5 concentrations (Lu et al., 2019). This may be be-
cause urban development is accompanied by increasing PM2.5 emis-
sions, and cities undoubtedly contain large numbers of PM2.5

emission sources and factors that impact them, which has been cor-
roborated in published research. For example, Lu et al. studied the
correlation between PM2.5 concentrations and land use, and reached
analogous conclusions (Lu et al., 2018). Furthermore, increasing
numbers of people are moving from rural to urban areas, and the
continuous expansion of cities increases the urban heat island effect,
which would also promote the generation and accumulation of
pollution sources and exacerbate the damage to the atmospheric en-
vironment (Zhang et al., 2009). These phenomena demonstrate that
the spatial heterogeneity of PM2.5 concentrations is closely linked to
differences in the level of urbanization.

In this study, PT, an inevitable result of increased productivity and
social progress, was significantly and negatively related to the PM2.5

concentrations, which was consistent with the results of previous
studies. For example, Han et al. (2014) and Yu and Liu (2016) both
demonstrated that environmental pollution would continuously in-
crease to a “peak point”, after which the pollution will decrease, ac-
cording to the Environmental Kuznets Curve hypothesis. This may
be because the tertiary industry mainly involves industries that are
not directly related to PM2.5 emissions, such as scientific research,
technical services, and environmental and public facilities manage-
ment. Moreover, with the rapid development of the tertiary industry,
the level of socialization and specialization of industrial and agricul-
tural production would be greatly improved, the production struc-
tures would be optimized, and the advanced scientific technologies
and ideal prevention and control measures would greatly inhibit or
reduce PM2.5 emissions, thereby promoting sustainable environ-
mental and economic development.

The results of the LISAmodel further confirm that the spatial relative
risks of PM2.5 pollution were negatively correlated with the temporal
variation trends, indicating that cities with lower PM2.5 pollution risk
exhibited a greater increasing trend, and cities with higher PM2.5 pollu-
tion risk exhibited a lower increasing trend. Notably, some cities, such as
Tianjin and Zaozhuang, not only exhibited higher PM2.5 pollution risk,
but also presented strong increasing trends. Furthermore, Zhangjiakou,
Chengde, Rizhao, Qingdao, and Nanyang exhibited relatively high
growth trends, yet their risk of PM2.5 pollution was currently low. This
may be because, when the degree of development differs between re-
gions, the pollutant emission intensity or type would also differ, and
during urbanization, industries continue tomove to an area's surround-
ing cities (Zhao et al., 2012). Therefore, these cities should receive more
attention as they could become high-risk areas in the future.

Based on the above findings, we propose the following recommen-
dations. First, industry is an important factor affecting air pollution in
China (Zhu et al., 2019), and cities with high industrial activities ensure
high air pollution, such as Tianjin, Zhengzhou, and Zaozhuang. There-
fore, during rapid urbanization, industrial expansion should be suffi-
ciently restricted, particularly the expansion of polluting industries.
Moreover, in the future development of cities, sustainable construction
should be strengthened to decrease and control the emissions and accu-
mulation of PM2.5 (Lu et al., 2018). Furthermore, strengthening pollu-
tion regulations, using clean energy, and improving technologies
would aid in relieving the increasing PM2.5 concentrations. Additionally,
regional cooperation should be strengthened, as air pollutants spread
due to their mobility. Furthermore, polluting enterprises relocate from
coastal to inland cities during urbanization (Yang et al., 2020), and
this should be limited to reduce air pollution issues and ensure sustain-
able development.

This work had some limitations. First, we considered urbaniza-
tion and other socioeconomic factors as the impacting factors;
however, several environmental factors, such as atmospheric hu-
midity and air temperature, were omitted. Second, the PM2.5 prod-
uct used in the study has some biases across China, which may
introduce some uncertainty (Li et al., 2017). However, this does
not affect the long-term PM2.5 concentrations trends. The dataset
has good accuracy, and the cross-validated R2 value between the
estimated annual average PM2.5 concentrations and station-based
observation values in the study area was 0.75. A higher spatiotem-
poral resolution (such as 1 km) may be necessary if the study re-
gion is a city or a smaller unit. In the future, PM2.5 data with
higher spatiotemporal resolution and more detailed statistical
units will be used to provide more accurate estimates of the
PM2.5 pollution risk.
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5. Conclusions

In this study, a unitary linear regression model was used to explore
the temporal variation trends in the North China region from 2000 to
2017. The BSTHMwas then used to investigate the spatiotemporal het-
erogeneity of PM2.5 pollution, and the correlation between its spatial
relative risks and temporal variation trends was further examined
using the LISA model. Finally, the determinant power of urbanization
and other socioeconomic factors on PM2.5 concentrations was quanti-
fied using the SLM. Temporally, the PM2.5 concentrations increased dur-
ing the selected period. Spatially, the relative risks were negatively
related to temporal variations, while urbanization was significantly
and positively linked to the PM2.5 concentrations. Cities were found to
have either high or low PM2.5 pollution risk, but all cities exhibited a no-
tably increasing trend, such as Tianjin, Zaozhuang, Qingdao, and
Xinyang, which will experience more severe air pollution problems
with rapid urbanization and should receive more attention in the near
future. Therefore, it is strongly recommended that policy-makers con-
sider these future air pollution trends when developing urban develop-
ment policies.
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