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ABSTRACT
Remote sensing time series imagery (RSTSI) provides a useful tool 
for crop mapping, as it provides crucial spectral, temporal, and 
spatial (STS) features. However, its high dimensionality coupled 
with the limited number of training samples leads to an ill-posed 
classification problem and the Hughes phenomenon. To solve this 
problem, this study presents a multiple-feature-driven co-training 
method (MFDC) for accurately mapping crop types based on RSTSI 
with a limited number of training samples. In MFDC, four comple
mentary pre-defined views, which represent STS features, are gen
erated for the utilization of multiple features. Then, to enhance the 
classifier’s generalization ability, a novel labelled sample augmenta
tion method that combines the Breaking Tiles algorithm and co- 
training is proposed. Third, to ensure the effectiveness of ensemble 
learning in co-training as well as to further speed up the learning 
process, a multi-view semi-supervised feature learning algorithm 
that expands the single view semi-supervised learning algorithm to 
multiple views is proposed and embedded in co-training. Finally, 
a weighted majority vote method is utilized to obtain the classifica
tion results. The experimental results for study areas in the United 
States indicate that the proposed method can accurately map crop 
types with a limited number of labelled training samples without 
a significant computational cost.
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1. Introduction

Remote sensing provides a useful tool for identification, monitoring, and mapping of land 
cover because of its capacity to provide consistent and repeatable measurements at an 
appropriate spatial scale (Verbesselt et al. 2010). However, it is quite difficult to accurately 
map complicated land cover categories with similar spectral characteristics at certain 
points in time (Senf et al. 2015). For example, some crop types show very small spectral 
differences at certain times of a year. However, crops usually have different seasonal 
variations; therefore, to improve the accuracy, it is vital to capture their phenological 
dynamics and combine them with fine spatial information (Senf et al. 2015; Prishchepov 
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et al. 2012) as well as detailed spectral information (Griffiths, Nendel, and Hostert 2019). 
Remote sensing time series imagery (RSTSI) is an important means of obtaining spectral- 
temporal-spatial (STS) features. Compared to single-date images, which reflect land 
surfaces at certain points in time, RSTSI has been shown to have a high capacity for the 
characterization of environmental phenomena and vegetation dynamics, as well as dis
crete change events (Suess et al. 2018; Jönsson et al. 2018; De Alban et al. 2018; Arévalo, 
Olofsson, and Woodcock 2020; Henits, Jürgens, and Mucsi 2016; Yan et al. 2015).

An often-used strategy to map crop types is using RSTSI as the input of some state-of-the 
-art supervised classification algorithms, such as Random Forest (RF) (Estel et al. 2015; 
Rodriguez-Galiano et al. 2012; Clark et al. 2010; Yan and Roy 2015; Salehi, Daneshfar, and 
Davidson 2017), Support Vector Machine (SVM) (Zhu and Liu 2014; Hackman, Gong, and 
Wang 2017), and deep learning (Interdonato et al. 2019; Zhong, Lina, and Zhou 2019; 
Pelletier, Webb, and Petitjean 2019). To further improve the classification accuracy, the 
original spectral features (Forkuor et al. 2017; Hu et al. 2018; Kussul et al. 2017), the temporal 
features (Sexton et al. 2013; Jia et al. 2014; Müller et al. 2015), the statistics of the temporal 
spectral features (Forkuor et al. 2017; Yu and Shang 2017), and spatial features (Rodriguez- 
Galiano et al. 2012; Yan and Roy 2014) have been used as input to the classifiers. However, 
the training sample size and feature dimension are two factors that affect the generalization 
ability of the classifier. The ratio of training sample size to feature dimension determines the 
generalization ability of the classifier (Baraldi, Bruzzone, and Blonda 2005). It is generally 
considered that an appropriate training sample size should be about 10 times more than the 
number of feature dimensions (Hughes 1968). However, obtaining labelled training samples 
is time-consuming, difficult, and costly, while, when considering multiple features of RSTSI 
as input, the number of feature dimensions is high. This imbalance easily leads to ill-posed 
classification problems (Hughes 1968).

Semi-supervised learning has been demonstrated to be an effective way to solve this 
ill-posed classification problem. In this approach, the useful information in the unlabelled 
samples is mined to improve the generalization ability of the classifier with a limited 
number of training samples (Shahshahani and Landgrebe 1994). Self-training and co- 
training are two typical examples of semi-supervised learning methods. Self-training 
iteratively selects reliable samples with predicted labels to increase the training sample 
size without significant extra cost, and these additional samples are further optimized to 
reduce the cumulative error in the iteration process (Tan et al. 2015; Di and Crawford 
2011). To select more useful unlabelled samples, Dópido et al. (2013) applied active 
learning to a self-training framework, in which informative unlabelled samples were 
selected first. Then, the constraint of the neighbourhood information was utilized to 
reduce the error rate in label prediction. To further improve the label prediction accuracy, 
Kim, Park, and Lee (2017) leveraged past land cover maps as supplementary information 
and designed pre-defined rules to predict the labels. However, the errors of past land 
cover maps add some uncertainties. Instead of incorporating supplementary information, 
Ma, Wang, and Wang (2016) constructed a framework of joint global and local decision- 
making for predicting selected unlabelled samples. Tan et al. (2014) utilized the Mean 
Shift segmentation method to first extract the spatial information, and used the latter to 
optimize the final classification result.

Co-training is another widely used semi-supervised learning algorithm (Blum and 
Mitchell 1998). Unlike self-training, which applies the learning process on a single view, 
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co-training considers unlabelled samples as an information interaction among different 
views during learning, each view represents a kind of information of unlabelled samples. 
First, a classifier is trained on each view using the initial labelled training samples. Then, each 
classifier selects unlabelled samples with reliably predicted labels and adds these samples to 
another classifiers’ training samples. By iteratively increasing the number of training samples 
for each classifier, the classifiers’ generalization ability can be improved. However, co- 
training relies on complementarity and independence of the multi-views (Nigam and 
Ghani 2000), which reduces its applicability. To relax this independence requirement, Zhi- 
Hua and Ming (2005) proposed a tri-training algorithm that divided the labelled samples 
into three parts (views) by bootstrap. An unlabelled sample for each view would be then 
labelled when the two other classifiers agreed on a label (Zhi-Hua and Ming 2005; Tan et al. 
2016). Gu and Jin (2017) further expanded this approach to more views for performance 
enhancement. In the above-mentioned tri-training algorithms, the final classification results 
were generated by using ensemble learning. However, the effectiveness of the algorithms 
was not studied. To increase the differences among the views to ensure the effectiveness of 
ensemble learning, Tan et al. (2016) improved the traditional tri-training by selecting three 
out of four classifiers with considerable differences based on a diversity measurement.

Compared to self-training, which performs on a single view without exploiting infor
mation from other views, co-training’s multi-view approach makes it more suitable for the 
STS features of RSTSI. Nonetheless, co-training is still limited in the following aspects: First, 
although the independence requirement of multi-views can be relaxed through the tri- 
training approach, its assumption that the accumulated labelling noise can be compen
sated with a large amount of unlabelled data makes a large number of unlabelled sample 
lack representativeness, meanwhile leading to an increase of training times. Second, the 
current strategy of introducing diverse measurements to ensure the effectiveness of 
ensemble learning in the co-training is time-consuming.

In light of the aforementioned problems, in this study a novel multiple-feature-driven co- 
training (MFDC) method is proposed for accurately mapping crop types using the STS 
features of RSTSI. The improvement of the MFDC lies in two strategies: First, to enhance the 
representativeness and accuracy of selected unlabelled samples, a labelled sample aug
mentation algorithm is proposed. Second, to ensure the effectiveness of ensemble learning 
as well as to speed up the learning process, a multi-view semi-supervised feature (MVSSF) 
learning approach is proposed, which enlarges the single view semi-supervised learning 
algorithm to multiple views. The main novelties of the proposed MFDC method include the 
following: (1) A co-training algorithm capable of making full use of the STS features of RSTSI 
is utilized. (2) MFDC can accurately map crop types using a limited number of training 
samples without significant computational cost. (3) To the best of our knowledge, this study 
introduces for the first time multi-view feature learning in a co-training algorithm so as to 
ensure the effectiveness of ensemble learning as well as to speed up the learning process.

2. Study area and data sets

2.1. Study area

For this study, we conducted experiments examining two agricultural areas in the USA 
(Figure 1). One site involved images from 2010 from Kansas State, in the Central Great 
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Plains area of the USA, covering an area of 13.5 km × 13.5 km. Kansas State is dominated 
by agriculture, covering 46.9% (10.0 million ha) of its total area (Wardlow and Egbert 
2008). Mapping crop types in this study site was complicated because of the similarity in 
spectra of different crop types, making it suitable for testing how well the proposed MFDC 
method can recognize complex crop types.

Figure 1. Location of two study areas and reference datasets. (a) Location of two study areas, (b) 
Reference datasets of study area 1, (c) Reference datasets of study area 2.
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To further prove the effectiveness, generalization, and transferability of MFDC, an 
experiment was also conducted with 2017 images from another study site located in 
Texas State, USA, covering an area of 12 km × 12 km. This site encompasses corn, cotton, 
pasture and grassland, Sorghum, and winter wheat plantations.

2.2. Reference dataset

The National Agricultural Statistics Service Cropland Data Layers (CDL), featuring 
the highest accuracy in current crop-type classification for the two study areas for 
2010 and 2017 were regarded as the reference data (Table 1). Furthermore, as the 
accuracy of CDL varies for non-crop types, pasture and grassland data were not 
considered.

2.3. Dataset processing

Landsat Surface Reflectance Data (LSRD) with 30 m spatial resolution as well as sub- 
pixel geolocation accuracy for 2010 and 2017 were downloaded from the United 
States Geological Survey Earth Resources Observation and Science Centre. The two 
study areas were covered by Landsat (Path 30, Row 34 and Path 31, Row 35, 
respectively, in the Worldwide Reference System-2). The LSRD of Landsat 5 and 
Landsat 7 were generated from the Landsat Ecosystem Disturbance Adaptive 
Processing System (Masek et al. 2006). The LSRD of Landsat 8 was generated 
from the Landsat Surface Reflectance Code (Vermote et al. 2016). In this study, 
subtle differences in the spectral ranges of the corresponding bands between 
Landsat 5/7 and Landsat 8 for the study area in Texas State were neglected 
because they did not have a significant impact on the spectral variability (Li, 
Jiang, and Feng 2014; Flood 2014).

Moderate-resolution Imaging Spectroradiometer (MODIS) Nadir Bidirectional 
Reflectance Distribution Function-Adjusted Reflectance 16 days composite data 
(MCD43A4 collection 6) with 500 m spatial resolution for 2010 and 2017 were obtained 
from the Land Processes Distributed Active Archive Centre to generate the fused Landsat- 
MODIS reflectance time series for crop classification, and MODIS tiles of h10v05 and 
h18v04 were used to cover the two study areas.

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) (Feng, 
Schwaller, and Hall 2006) was used to generate RSTSI for the two study areas. For details 

Table 1. Statistic of reference sample for the two study areas.

Label Class name

Reference sample number

Study area 1 Study area 2

Class 1 Corn 59958 66497
Class 2 Cotton – 18550
Class 3 Sorghum 15638 5769
Class 4 Soybeans 3370 –
Class 5 Winter wheat 37537 27833
Class 6 Alfalfa 16733 –
Class 7 Fallow/idle cropland 18521 17651
Class 8 Developed open space 5988 –
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on STARFM, we refer the reader to (Feng, Schwaller, and Hall 2006). The constructed dense 
regular RSTSI of the two study areas each consisted of 38 images for the years 2010 and 
2017 (Figure 2).

3. Methodology

3.1. Overview

The flow of the proposed MFDC method consists of the following steps (Figure 3): First, to 
make full use of the STS features of RSTSI, four complementary pre-defined views are 
generated (Section 3.1). Then, a novel labelled sample augmentation framework is used to 
enhance the classifier’s generalization ability by iteratively increasing the number of 
training samples (Section 3.2). Third, MVSSF algorithm that expands the single view semi- 
supervised learning algorithm to multiple views, is applied to co-training to perform 
multi-view feature selection to ensure the effectiveness of ensemble learning without 
significant extra cost (Section 3.3). Finally, a weighted majority vote method is applied to 
obtain the final classification results (Section 3.4). In the following sections, we present 
a more detailed explanation of the proposed MFDC method.

3.2. Multi-view generation using multiple features

For effective utilization of the STS features of RSTSI, four pre-defined relatively comple
mentary views were used as input for the co-training algorithm (Table 2), where each view 
represented a class of features.

View 1 represents the spectral index time series that consists of the Normalized 
Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) 
time series, which were utilized to record phenological changes. The NDVI time series has 
been widely accepted as a sensitive indicator of phenological variations, biomass changes 

Figure 2. RSTSI in two study areas obtained using STARFM. Dots in the grey box indicate Landsat 
images that were used as input in the STARFM. Dots below the grey box represent Landsat images 
that were only used for constructing RSTSI. (a) Study area in Kansas, (b) Study area in Texas.
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of vegetation, and crop classification (Shao et al. 2016; Sun et al. 2016; Sexton et al. 2013). 
NDWI is also referred to as the leaf area water absent index, and can contribute to 
improving crop mapping (Hao et al. 2015). It has also been widely utilized as an input 
variable for land cover classification (Fisher, Flood, and Danaher 2016; Dronova et al. 2015; 
Davranche, Lefebvre, and Poulin 2010).

Figure 3. Framework of the proposed multiple-feature-driven co-training method.

Table 2. List of multiple feature, which were categorized into four views.

View order Feature category Feature
Number  

of feature

View1 Spectral index time series feature NDVI time series, NDWI time series 76
View2 Tasselled cap transformation feature Brightness, greenness, wetness 81
View3 Time series metrics feature Standard deviation, quantile range, quantile value, 

amplitude, maximum, mean, median, minimum
64

View4 Multi-seasonal textural feature Variance, homogeneity, contrast, dissimilarity, 
entropy, second moment, correlation

192
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View 2 represents tasselled cap transformation features, including the brightness, 
greenness, and wetness. These features, which are a typical method to enhance discrimi
nation among spectral features, are beneficial for the accurate characterization of land 
cover types and are particularly useful for the identification of similar cover types (Sexton 
et al. 2013). A total of 27 clear Landsat top-of-atmosphere images were characterized 
using brightness, greenness, and wetness. The tasselled cap transformation features do 
not contain complete temporal information, so the correlation between view 1 and view 2 
is alleviated to some extent.

View 3 represents the time series metrics features. Multi-temporal spectral data cap
tured at various dates in the same or consecutive years can be summarized by statistical 
metrics (e.g., average, variability), which in turn function as descriptive or predictive 
variables and have shown to be a viable means for the discrimination of land cover 
types (Gómez, White, and Wulder 2016) (Gebhardt et al. 2014; Petitjean, Inglada, and 
Gancarski 2012). In this study, eight statistical metrics of NDVI, NDWI, and six Landsat 
reflectance band time series, including band 1–5, band 7 for Thematic Mapper (TM)/ 
Enhanced Thematic Mapper Plus (ETM+) and band 2–7 for Operational Land Imager (OLI), 
were selected (Table 2). Note that although view 3 is derived from view 1, the correlation 
of the two views is alleviated using the proposed MVSSF (Section 3.3).

Although spectral and temporal features are vital for identifying land cover (Zhu and 
Woodcock 2014), these features are sensitive to variations in the vegetation density 
(Gómez, White, and Wulder 2016). Moreover, the above-mentioned views are generated 
based on the pixel scale that neglect spatial information, which was mitigated through the 
creation of view 4. It represents a multi-seasonal textural feature, with a proven potential 
for mapping land cover (Rodriguez-Galiano et al. 2012; Akar and Güngör 2015). A clear 
Landsat image was selected for each season and further eight textural features, including 
the mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and 
correlations with TM/ETM+’s band 1–5, band 7 and OLI’s band 2–7, were calculated. Co- 
occurrence matrix measures (Haralick, Shanmugam, and Dinstein 1973) were utilized for 
describing the remote sensing texture, whose window size was 3 × 3 pixels.

3.3. Labelled sample augmentation

As previously described, the process of increasing the number of samples by iteration, 
defined as labelled sample augmentation in this paper, is a critical step to enhance the 
generalization ability of the classifier. Here, a novel labelled sample augmentation frame
work was designed for application on the four pre-defined views. The flowchart of the 
proposed scheme consists of the following steps (Figure 4):

First, the posterior probability set of each view was generated using an SVM and 
initially labelled training samples XLabel. Since standard SVM classifiers do not provide 
a posterior probability, the posterior probabilities of a multi-class classification were 
obtained using the voting method based on the posterior probabilities of binary classi
fication, as proposed by Platt (Platt 2000). P yt ¼ ljxtð Þ is defined as follows: 

P yt ¼ ljxtð Þ ¼

Pc
j0¼1;j0�l Pl;j0 yt ¼ ljxtð Þ

Pc
k0¼1

Pc
j0¼1;j0�k0 Pk0;j0 yt ¼ ljxtð Þ

(1) 
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where Pl;j0 yt ¼ ljxtð Þ represents the posterior probability of sample xt being assigned 
to class l as calculated independently using a binary SVM, which discriminates only 
between class l and class j0, Pk0;j0 yt ¼ ljxtð Þ represents the posterior probability of 
sample xt being assigned to class k0 as calculated independently using a binary SVM, 
which discriminates only between class k0 and class j0, c is the total number of 
classes.

To further improve the representativeness of the selected unlabelled samples, the 
Breaking Tiles (BT) algorithm (Bruzzone and Persello 2009) was utilized to achieve 
more diversity in the unlabelled samples of each view. The BT rule is defined as 
follows: 

Figure 4. Framework of the proposed labelled sample augmentation, taking view 1 as an example. 
The process for the other views is the same as that of view 1.
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bxBT
t ¼ argmin

xt2Xu

max
l2 1; ... ;cf g

P yt ¼ ljxtð Þ � max
l2 1; ... ;cf gn lþf g

P yt ¼ ljxtð Þ

� �

(2) 

where lþ ¼ argmax
l2 1; ... ;cf g

P yt ¼ ljxtð Þ is the most probable class for sample xt , and P yt ¼ ljxtð Þ

represents the posterior probability of xt being assigned to class l. Xu represents unla
belled samples.

Subsequently, the i-th view’s selected unlabelled samples are labelled if the other three 
classifiers agree on the labelling of these samples. To further reduce the number of the 
selected unlabelled samples, thus reducing computation time and guaranteeing the 
diversity of the unlabelled samples, a sample is selected if the label predicted by 
the other three classifiers is different from the label predicted by the first classifier. The 
reasoning is that these samples are labelled with high confidence but do not improve the 
generalization ability, as they do not add to the diversity.

Finally, the selected unlabelled samples were added to the initial labelled samples to 
increase the labelled sample size, and were then input to the MVSSF to optimize the multi- 
view features (Section 3.3).

3.4. Multi-view semi-supervised feature learning

MVSSF was designed to perform multi-view feature selection to alleviate the dependency 
between different views to ensure the effectiveness of ensemble learning and to speed up 
the learning process.

Inspired by the Structural Feature Selection with Sparsity method (Ma et al. 2012), in 
MVSSF we expand a single-view semi-supervised feature selection to multi-view. The 
global objective function of MVSSF is: 

min
X4

i¼1

ui
r Tr Fi

TLiFi
� �

þ Trð Fi � YÞTU Fi � Yð Þ
� �

þ μXi
TWi þ 1ni bi

T � Fi
2
F

� �
þ γWi2;1 

subject to
P4

i¼1
ui ¼ 1; ui � 0 (3) 

where X ¼ Xi 2 R di�ni

n om

i¼1 
denotes the set of views which consists of each view’s 

selected unlabelled samples, and Xi denotes the i-th view. di denotes the number of 
features in the feature space of the i-th view, and ni denotes the number of selected 
unlabelled samples of the i-th view. Wi 2 R di�c denotes a projection matrix of the i-th 
view used for feature selection, c is the class number, while μ, γ, and r are pre-defined 
regularization parameters. k � kF denotes the Frobenius norm, and k � k2;1 denotes the 
L2,1 norm. Each terms are explained below.

The manifold regularization term Tr Fi
TLiFi

� �
is utilized to address each view’s high- 

dimensional data with the manifold structure, where F ¼ f 1; � � � ; f ni½ �
T
2 R ni�c is the 

predicted label. The graph Laplacian matrix Li 2 R ni�ni is defined as 

Li¼Di � Si (4) 
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where Di is a diagonal matrix with the diagonal elements Dp;p
i ¼

P

q
Sp;q

i ;"p. Sp;q
i 2 R ni�ni 

denotes the similarity matrix as 

Sp;q
i ¼

1; xp and xq are k nearest neighbors
0; otherwise

�

(5) 

The relation between different views is highlighted by the term Trð Fi � YÞTU Fi � Yð Þ
� �

, 

where Y ¼ y1; y2; � � � ; yni

� �T
2 0; 1f g

ni�c is the label matrix, constructed by fixed use of 

the initial labelled training samples XLabel. If Xi0 belongs to the j’-th class, Yi0;j0 ¼ 1 and 

Yi0;j0 ¼ 0; otherwise, yi0 is set to a vector with all zeros. U 2 R ni�ni is a selecting diagonal 
matrix whose diagonal element Ut;t ¼ 1 if Xt is labelled and Ut;t ¼ 1 otherwise.

The label consistency constraint term Xi
TWi þ 1ni bi

T � Fi
2
F is added to relate the 

selected features of each view to the concepts of the initial labelled training samples. 
Here, bi 2 R c is the bias term of the i-th view.

Because the above three terms all contain predicted labels, we further apply the linear 
weighting of each view’s regularization term with regard to ui

r as the view weight 
coefficients. Here, r adjusts the sparsity of the view weight coefficients, where a smaller 
value highlights the weight of important views.

The regularization term jjWijj2;1 guarantees sparsity to be suitable for feature selection.
Once the i-th view’s selected unlabelled samples are generated by the labelled sample 

augmentation, these samples, along with the initial labelled training samples XLabel, are 
utilized to solve the optimization problem (Equation (3)) and obtain the selected features 
for each view and the view weight coefficients ui. The optimization process of the MVSSF 
is summarized in Table 3. More details for the variables updating can be found in the 
supplemental material.

3.5. Classification based on the weighted majority vote method

With the increase in the labelled training sample number, and the optimization of 
multi-view features achieved through labelled sample augmentation and MVSSF 
respectively, the classifier’s generalization ability on each view is enhanced. 

Table 3. Multi-view semi-supervised feature learning process.
Step Process

Input: X, μ, γ, r, Si
Output: selected features for each view and ui

1: Construct graph Laplacian matrix Li
2: Compute the selecting matrix U
3: Initialize ui as 1

4
4: Initialize Wi randomly
5: While not convergent to
6: For i = 1 to 4 do
7: Update bi

T using equations (A1).
8: Update Wi using equations (A4).
9: Update ui using equations (A7).
10: Sort each view’s feature according to jjWiðk̂; :Þjj2 in descending order and select the top-k̂ ranked entries to 

obtain the selected feature for each view
11: End for
12: End while
13: Return selected feature for each view and ui
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Therefore, upon reaching the maximum iterations number, a weighted majority vote 
method is utilized to predict the final label. The combination rule is as follows: 

C Xð Þ ¼ max
c0¼1;2;���;c

X4

i¼1

uiP c0jXið Þ (6) 

where C Xð Þ is the final class label of the the set of views, ui denotes the view weight 
coefficients obtained using MVSSF and P c0jXið Þ is the posterior probability of sample to be 
classified as class c0 on the i-th view.

4. Experiment

4.1. Experimental strategy

In this section, comparison experiments are presented to demonstrate the effective
ness of MFDC. MFDC, along with other semi-supervised learning frameworks, was 
implemented with 10, 15, 20, 25, and 100 initial labelled training samples per class. 
The different semi-supervised learning frameworks used for comparison are as 
follows:

(1) Self-training performance on multi-view, denoted as Mv-Self. Specifically, during the 
labelled sample augmentation process, the BT algorithm was utilized to select unla
belled samples for each view. Then, the label of the selected unlabelled samples was 
predicted by an initial classification map while the final classification result was 
generated through a majority vote.

(2) Multi-view co-training, denoted as Mv-Co. During the augmentation process, an 
initial candidate sample set for each view was generated by selecting the samples 
with consistently predicted labels in other views. Furthermore, some samples were 
randomly selected from the initial candidate sets and added to the training 
samples of each view. The final classification result was generated through 
a majority vote.

(3) Multi-view co-training, denoted as Mv-Self-Co. During the augmentation process, 
the BT algorithm was utilized to select unlabelled samples from each view, which 
were then labelled upon agreement with the other three classifiers. The final 
classification result was generated through a majority vote.

(4) The proposed MFDC algorithm.

MFDC was also compared with the use of SVM with principal component analysis 
(PCA) features to verify the superiority of using STS features over using spectral 
features only. To achieve this, the spectral bands of all the clear Landsat images were 
first stacked together, followed by PCA. The first p0 components with 90% informa
tion were selected as input for the SVM. The number of input features of study area 
1 and study area 2 were 14 and 16, respectively. The details of the algorithms are 
shown in Table 4.

The performance of the above-mentioned algorithms was evaluated by calculating 
their overall accuracy (OA) and average accuracy (AA). The initial training samples were 

INTERNATIONAL JOURNAL OF REMOTE SENSING 8107



selected randomly per class from the reference dataset. The final accuracy results are the 
average of ten independent runs.

4.2. Parameter setup

In the experiments, the parameters were set as follows:

(1) Labelled sample augmentation: the maximum number of iterations was set to 20. 
The number of the selected unlabelled samples in each iteration for all the semi- 
supervised learning frameworks was 100.

(2) Classifier parameter: the linear kernel function type was used for the SVM. The 
penalty factor was 0.5, which was obtained by comparing results obtained with the 
factor ranging from 2−8 to 28, using SVM as the classifier with 25 labelled training 
samples per class.

(3) MVSSF: The k nearest neighbour range was set to 5. r was fixed to 2. We compared 
all literature-reported values for the regularization parameters μ and γ (Ma et al. 
2012), namely {0.001, 0.01, 0.1, 1, 10, 100 and 1000}, to obtain the best results.

4.3. Experimental results

The initial and final classification accuracies of the different semi-supervised learning 
frameworks for the two study areas are shown in Tables 5 and 6. Meanwhile, SVM-PCA, 
which simply uses PCA-transformed features, was regarded as a benchmark scenario to 
test the effectiveness of STS features.

In area 2, the initial classification accuracies of the semi-supervised learning frame
works are higher than those of SVM-PCA, which indicates the superiority of STS features 
over the original spectral features. However, in area 1, the accuracy of semi-supervised 
learning is significantly lower than that of SVM-PCA when the initial training sample is 10. 
This could be related to the fact that, compared to the original spectral features, the 
higher dimensionality of the STS features outweighs the fact that the small number of 
training samples. In this case, the use of PCA is an effective way to achieve higher accuracy 
compared to STS features. Nevertheless, the accuracy of SVM-PCA is still unsatisfactory. 
The STS features mitigate the issues of the ill-posed classification problem through the 
multi-view co-training method. As shown in Tables 5 and 6, the significant improvement 
in accuracy of the semi-supervised learning frameworks, compared to that of SVM-PCA 
verify this potential of the STS features.

Table 4. Detail of the algorithms involved in the experiments.
Algorithm Labelled sample augment Feature learning Feature

Mv-Self BT None STS
Mv-Co Co-training None STS
Mv-Self-Co BT and co-training None STS
MFDC BT and co-training MVSSF STS
SVM-PCA None PCA Original spectral
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Table 5. OA and AA ± standard deviation of different semi-supervised learning frameworks for study 
area 1. The column labelled Initial presents classification using only the initial labelled samples.

Initial number Method

OA AA

Initial Final Initial Final

10 SVM-PCA 0.7904 ±0.0110 - 0.6971 ±0.0190 -
Mv-Self 0.7795 ±0.0377 0.8552 ±0.0052 0.6717 ±0.03429 0.7693 ±0.0122
Mv-Co 0.8638 ±0.0014 0.8051 ±0.0093
Mv-Self-Co 0.8773 ±0.0006 0.8211 ±0.0024
MFDC 0.8777 ±0.0011 0.8269 ±0.0032

15 SVM-PCA 0.7959 ±0.0108 - 0.7018 ±0.0135 -
Mv-Self 0.8000 ±0.0129 0.8590 ±0.0041 0.6959 ±0.0156 0.7746 ±0.0105
Mv-Co 0.8645 ±0.0020 0.8021 ±0.0089
MV-Self-Co 0.8776 ±0.0007 0.8181 ±0.0028
MFDC 0.8778 ±0.0006 0.8277 ±0.0022

20 SVM-PCA 0.8043 ±0.0111 - 0.7089 ±0.0093 -
Mv-Self 0.8087 ±0.0108 0.8617 ±0.0044 0.7054 ±0.0080 0.7821 ±0.0108
Mv-Co 0.8650 ±0.0023 0.7999 ±0.0093
MV-Self-Co 0.8778 ±0.0008 0.8188 ±0.0029
MFDC 0.8784 ±0.0009 0.8247 ±0.0028

25 SVM-PCA 0.8115 ±0.0100 - 0.7111 ±0.0107 -
Mv-Self 0.8133 ±0.0083 0.8631 ±0.0038 0.7154 ±0.0061 0.7834 ±0.0104
Mv-Co 0.8665 ±0.0013 0.7974 ±0.063
Mv-Self-Co 0.8778 ±0.0008 0.8176 ±0.0033
MFDC 0.8784 ±0.0007 0.8232 ±0.0026

100 SVM-PCA 0.8332 ±0.0071 - 0.7349 ±0.0060 -
Mv-Self 0.8306 ±0.0046 0.8676 ±0.0030 0.7319 ±0.0074 0.7829 ±0.0030
Mv-Co 0.8692 ±0.0014 0.7832 ±0.0048
Mv-Self-Co 0.8783 ±0.0009 0.8041 ±0.0026
MFDC 0.8788 ±0.0009 0.8092 ±0.0026

Table 6. OA and AA ± standard deviation of different semi-supervised learning frameworks for study 
area 2. The column labelled Initial presents classification using the initial training labelled samples.

Initial number Method

OA AA

Initial Final Initial Final

10 SVM-PCA 0.5889 ±0.0521 - 0.4070 ±0.0673 -
Mv-Self 0.6915 ±0.0211 0.8376 ±0.0083 0.5560 ±0.0497 0.7277 ±0.0641
Mv-Co 0.8513 ±0.0027 0.7617 ±0.0269
MV-Self-Co 0.8711 ±0.0015 0.7800 ±0.0141
MFDC 0.8716 ±0.0030 0.7920 ±0.0137

15 SVM-PCA 0.6756 ±0.0476 - 0.4950 ±0.1027 -
Mv-Self 0.7151 ±0.0375 0.8380 ±0.0090 0.6030 ±0.0543 0.7142 ±0.0403
Mv-Co 0.8523 ±0.0012 0.7654 ±0.0288
MV-Self-Co 0.8711 ±0.0026 0.7937 ±0.0099
MFDC 0.8729 ±0.0020 0.7863 ±0.0170

20 SVM-PCA 0.6988 ±0.0259 - 0.5478 ±0.0831 -
Mv-Self 0.7486 ±0.0237 0.8409 ±0.0112 0.6365 ±0.0367 0.7073 ±0.0440
Mv-Co 0.8531 ±0.0031 0.7566 ±0.0221
MV-Self-Co 0.8714 ±0.0027 0.7915 ±0.0107
MFDC 0.8731 ±0.0034 0.7928 ±0.0159

25 SVM-PCA 0.7043 ±0.0190 - 0.5585 ±0.0291 -
Mv-Self 0.7643 ±0.0191 0.8411 ±0.0062 0.6594 ±0.0195 0.7197 ±0.0362
Mv-Co 0.8539 ±0.0021 0.7598 ±0.0200
MV-Self-Co 0.8723 ±0.0020 0.7873 ±0.0195
MFDC 0.8729 ±0.0021 0.7955 ±0.0171

100 SVM-PCA 0.7742 ±0.0113 - 0.6967 ±0.0105 -
Mv-Self 0.8139 ±0.0063 0.8573 ±0.0019 0.7120 ±0.0087 0.7489 ±0.0075
Mv-Co 0.8618 ±0.0034 0.7473 ±0.0129
MV-Self-Co 0.8734 ±0.0028 0.7694 ±0.0185
MFDC 0.8734 ±0.0036 0.7925 ±0.0099
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In terms of comparison of different semi-supervised learning frameworks, it is clear that 
MFDC performs well and stably compared with the other semi-supervised learning frame
works. As shown in Table 5, compared to the initial accuracy, MFDC achieves the highest 
improvement in OA for area 1, when using 10, 15, 20, 25, and 100 samples per class as the 
initial labelled samples. Similar behaviour can be observed in Table 6, where the MFDC 
achieves the highest classification accuracies in study area 2. A comparative analysis of the 
data presented in Tables 5 and 6, indicates a more striking improvement in the initial 
classification performance when using 10, 15, 20, 25, and 100 samples per class as the 
initial labelled samples. To summarize, the proposed MFDC can achieve more accurate 
classification results using a limited number of training label samples.

The classification maps corresponding to the average OAs of ten runs obtained using 
the various methods are shown in Figures 5 and 6. As seen in the dotted box, compared to 
SVM-PCA, the initial classification results of semi-supervised learning frameworks 

Figure 5. Classification maps of study area 1 obtained by different learning frameworks with different 
labelled training sample sizes per class. A dotted box highlights areas with significant differences in 
the classification maps. The first line to the fifth line represent the labelled training sample number of 
10, 15, 20, 25, and 100. (a) SVM-PCA, (b) Initial classification map, (c) Mv-Self, (d) Mv-Co, (e) Mv-Self-Co, 
(f) MFDC.
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generate smoother results, especially in study area 2. Additionally, the final classification 
maps obtained by the semi-supervised learning frameworks are more consistent with the 
reference dataset, as shown in Figure 1, in some mixed regions of multiple crop types than 
the initial classification results. With regard to the different semi-supervised learning 
frameworks, similar results to those presented in Tables 5 and 6 can be observed, 
where Mv-Self generates the worst results. The classification maps obtained by Mv-Self- 
Co and MFDC are more consistent with the reference dataset.

To compare the different semi-supervised learning frameworks in further detail, the 
accuracies of the above-mentioned frameworks in the iteration process were evaluated. 
As shown in Figures 7 and 8, in general, the OAs of all views increase with the number of 
iterations, which indicates that the iteratively selected unlabelled samples are conducive to 
the classification process. The MFDC achieves higher OAs than the other semi-supervised 
learning frameworks, which indicates its superiority. Specifically, compared to Mv-Co and 
Mv-Self-Co, the accuracy of Mv-Self is unsatisfactory. This can be attributed to the fact that, 

Figure 6. Classification maps of study area 2 obtained by different learning frameworks with different 
labelled training sample sizes per class. A dotted box highlights areas with significant differences in 
the classification maps. The first line to the fifth line represent the labelled training sample number of 
10, 15, 20, 25, and 100. (a) SVM-PCA, (b) Initial classification map, (c) Mv-Self, (d) Mv-Co, (e) Mv-Self-Co, 
(f) MFDC.
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although the unlabelled samples selected by the BT algorithm are informative, the addition 
of these unlabelled samples to the classifier will increase the cumulative error. With regard 
to Mv-Co, for which the accuracy is slightly higher than that of Mv-Self, the improvement in 
the accuracy may be related to the effective utilization of information between the views. 
However, due to the lack of unlabelled sample diversity, there is no significant improvement 
in the generalization ability of classifier. Mv-Self-Co and MFDC outperform Mv-Co and Mv- 
Self on all indexes, which indicates the effectiveness of the combination of the BT algorithm 
with the traditional co-training algorithm. Compared to the Mv-Self-Co, MFDC shows 

Figure 7. Iteration process in different semi-supervised learning frameworks for study area 1 con
ducted with different labelled training sample numbers. The error bars indicate the standard devia
tions. (a) Initial number: 10, (b) Initial number: 15, (c) Initial number: 20, (d) Initial number: 25, (e) Initial 
number: 100.

Figure 8. Iteration process in different semi-supervised learning frameworks for study area 2 for 
different labelled training sample numbers. The error bars indicate the standard deviations. (a) Initial 
number: 10, (b) Initial number: 15, (c) Initial number: 20, (d) Initial number: 25, (e) Initial number: 100.
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a higher accuracy, which can be attributed to the ability of the proposed MVSSF to ensure 
the effectiveness of ensemble learning in co-training.

As described above, the STS features are superior to the original spectral features, as 
they provide more detailed information for classification. Moreover, the STS features 
extracted from the four pre-defined views can be utilized effectively by the combination 
of labelled sample augmentation and the proposed MVSSF algorithm.

5. Discussion

5.1. Effectiveness of multi-view semi-supervised feature learning

MVSSF is proposed and was embedded in co-training to perform multi-view feature 
selection to alleviate the dependency between different views to ensure the effectiveness 
of ensemble learning and to reduce the computational cost. The experimental results 
verified that the MVSSF algorithm ensure the effectiveness of ensemble learning, to 
further verify that the MVSSF algorithm improves the efficiency of the semi-supervised 
learning frameworks effectively, the corresponding running times were compared. Timing 
was performed using MATLAB R2016b on a desktop PC equipped with an Intel (R) Core 
(Trade Mark) i7-8700 CPU @3.20 GHz, 16.00 GB Ram. As shown in Table 7, there is a trade- 
off between the running time and accuracy; in general, the longer the calculation time of 
the algorithm, the better the accuracy. Although Mv-Self incurs the lowest computational 
cost in most cases, its classification performance is obviously lower than that of other 
frameworks, as mentioned previously. MFDC achieves very high classification accuracies 
for a low computational cost, especially compared to Mv-Self-Co. Therefore, the MVSSF 
algorithm improves the efficiency of semi-supervised learning.

Table 7. Running time ± standard deviation (s) of different semi-supervised learning 
frameworks.

Initial number Method

Running time (s)

Study area 1 Study area 2

10 Mv-Self 395.5519 ±12.7598 295.3951 ±8.7989
Mv-Co 490.2486 ±21.4323 446.3365 ±8.7989
Mv-Self-Co 576.1367 ±12.1198 463.2013 ±9.7850
MFDC 454.3984 ±3.1104 363.2256 ±9.7850

15 Mv-Self 415.8331 ±7.7610 308.3851 ±5.7525
Mv-Co 546.8348 ±12.4625 468.8220 ±8.5640
Mv-Self-Co 607.8910 ±10.9665 484.3865 ±12.5028
MFDC 491.3087 ±6.5493 376.5986 ±4.7117

20 Mv-Self 441.6154 ±8.1235 322.3924 ±4.8149
Mv-Co 583.0950 ±12.5041 485.9817 ±8.0268
Mv-Self-Co 645.1630 ±9.8411 506.9458 ±13.2872
MFDC 513.9933 ±10.2052 391.1194 ±6.7013

25 Mv-Self 463.8812 ±7.7165 337.8055 ±4.5821
Mv-Co 596.9593 ±12.2454 500.5225 ±8.5093
Mv-Self-Co 676.5910 ±11.4239 520.7545 ±9.2917
MFDC 526.9529 ±15.9470 406.5405 ±10.5227

100 Mv-Self 675.5836 ±11.6975 474.7314 ±7.7222
Mv-Co 852.2023 ±9.3716 627.8263 ±6.0559
Mv-Self-Co 878.3109 ±7.6532 651.0536 ±5.7707
MFDC 586.7979 ±2.8871 429.4411 ±3.3492
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5.2. Advantages of the multiple-feature-driven Co-training method

The MFDC algorithm was proposed for accurately mapping crop types based on RSTSI 
using limited numbers of labelled training samples. The experimental results verified the 
superiority of the proposed algorithm. Compared to the original spectral features, the STS 
features obtained using four pre-defined views mitigate the issues of the ill-posed 
classification problem through multi-view co-training. Furthermore, the proposed 
labelled sample augmentation iteratively selects reliable samples with predicted labels 
to the training samples to increase the training sample size, while MVSSF relieves the 
imbalance between the feature dimensions and the limited number of training samples 
by reducing the number of feature dimensions.

Compared to other semi-supervised learning frameworks, the proposed MFDC can 
achieve higher performance without significant extra computational cost. The superiority 
can be attributed to the following aspects:

The proposed novel labelled sample augmentation of MFDC enhances the information 
and representativeness of the selected unlabelled samples. The BT algorithm, which 
searches the samples at the edge of the hyperplane to add information to the labelled 
training samples (Bruzzone and Persello 2009) was introduced to enhance representa
tiveness. However, the accuracy is likely to decrease with the accumulation of uncertainty 
due to a lack of effective strategies to ensure the reliability of the prediction results. The 
general strategy is to introduce an additional algorithm (Tan et al. 2015; Ma, Wang, and 
Wang 2016) and auxiliary data (Kim, Park, and Lee 2017) in the learning process to predict 
the label directly or optimize the prediction results (Tan et al. 2014; Dópido et al. 2013). 
However, these strategies lead to an inevitable increase in the computational cost, as well 
as some additional uncertainties. In contrast, MFDC improves the accuracy of the pre
dicted labels of selected unlabelled samples by increasing the number of views instead of 
introducing additional complex strategies and auxiliary data. Therefore, the introduction 
of additional uncertainties and computational cost can be avoided.

5.3. Adaptability of the multiple-feature-driven Co-training method

Although the effectiveness of the MFDC method was verified in the two study areas, it is 
worth discussing the applicability of the proposed MFDC method to other cases.

In the experiment, we limited the number of training samples per class to 10 samples, 
which we consider to be the minimum, taking into account the relatively small extent of 
the two study areas and the complexity of crop types. When the complexity of crop cover 
is high, more representative training samples are required.

The proposed algorithm was tested in the two study areas to a relatively small spatial 
extent. To determine the influence of spatial extent on the accuracy of the MFDC method, 
the method was further applied in a larger study area with an extent of over 10 times that 
of study area 1. This study area is located in Kansas State and covers 2025 km2. The 
location of this study area is shown in the supplemental material. CDL data for 2014 were 
regarded as the reference data. LSRD and MCD43A4 collection 6 were utilized to generate 
RSTSI in the extended study area for 2014 using STARFM. The parameter setup of the 
MFDC method was the same as that presented in 4.2. Clearly, in the larger study area, the 
accuracy of the proposed MFDC is still substantial (Table 8). Compared to the initial 
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accuracy, MFDC still achieves a significant improvement in accuracy. Thus, the proposed 
algorithm is applicable to larger areas.

In some cases, the class imbalance, which indicates the proportion between different 
categories to be extracted, differs greatly is general. The proposed algorithm is not aimed 
at the problem of class-imbalance. Thus, it is difficult for the MFDC to provide satisfactory 
results in the presence of both class-imbalance and a limited number of training samples. 
In this case, we recommend that the MFDC should be applied in a hierarchical way, which 
involves merging similar categories and mapping these merged categories first, followed 
by further mapping of detailed categories.

5.4. Limitations and future work

The proposed method can accurately map crop types using a limited number of training 
samples without significant computational cost. However, the applicability of the MFDC 
still has some limitations:

The accuracy of MVSSF is sensitive to the number of selected features. Additional 
efforts should be made to improve the robustness of MVSSF in the presence of limited 
numbers of samples. These efforts include the application of a more effective graph 
construction method, such as Sparse Graph Regularization (SGR) and SGR with total 
variation (TV-SGR) (Xue et al. 2017), to express the manifold structure with fewer samples. 
The predicted label of the added sample Fi can also be utilized to augment the labelled 
samples in the process of feature learning.

The proposed MVSSF requires a relatively large number of pre-defined parameters and 
is strongly sensitive to some of these parameters. For example, the sensitivity analysis of 
regularization parameters μ and γ shows that different parameter settings have 
a significant impact on the accuracy. Fine-tuning all these parameters to select the 
optimal value is time-consuming, which limits the practicality of the proposed algorithm.

Finally, in this study, agricultural areas with a single-season cropping system were 
selected, and the effectiveness and efficiency of the proposed MFDC method were tested. 
Undeniably, more systematic analysis is necessary to determine the algorithm’s adapt
ability to other study areas with other complex land cover types.

6. Conclusions

In this study, we propose a novel co-training method for accurately mapping crop types 
using RSTSI with a limited number of labelled training samples. In the proposed 
method, a labelled sample augmentation method that combines the BT algorithm 

Table 8. OA ± standard deviation and AA ± standard deviation of MFDC in the larger study area. The 
column labelled Initial presents classification using the initial labelled training samples.

Initial number

OA AA

Initial Final Initial Final

10 0.7234 ±0.0645 0.8473 ±0.0045 0.6416 ±0.0199 0.7496 ±0.0458
15 0.7496 ±0.0218 0.8482 ±0.0034 0.6555 ±0.0120 0.7455 ±0.0453
20 0.7613 ±0.0213 0.8501 ±0.0035 0.6622 ±0.0130 0.7612 ±0.0377
25 0.7734 ±0.0170 0.8515 ±0.0026 0.6687 ±0.0070 0.7567 ±0.0417
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and co-training is designed to enhance the representativeness and label estimation 
accuracy of the selected unlabelled samples. Additionally, the MVSSF, which expands 
the single view semi-supervised learning algorithm to multiple views, is proposed and 
embedded in the framework to ensure the effectiveness of ensemble learning as well as 
to speed up the learning process of co-training. To the best of our knowledge, the 
present study is the first instance of multi-view feature learning being introduced into 
a co-training algorithm. The results of the experiments, conducted on study areas in the 
United States, confirm the effectiveness and superiority of MFDC, with some limitations 
on its practicality. Future improvements include the utilization of a more effective graph 
construction method and labelled sample augmentation in MVSSF free of complex 
parameter tuning, as well as further verification of the applicability of the algorithm 
to other complex land cover types.
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