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A B S T R A C T

The streamflow from the headwater areas of the Tibetan Plateau (TP) provides critical support for downstream
regions, yet understanding of the streamflow complexity on the TP, which is essential for hydrological modeling
and water resource management, remains scarce. This study aims to measure streamflow complexity in the
headwater areas of the TP and investigate the coupling effects of climatic variables (i.e., precipitation and air
temperature) on the streamflow complexity across multiple timescales. Using daily streamflow records, we
employ permutation entropy as the measure of annual streamflow complexity in the upper Heihe River (UHR)
watershed in the northeastern TP from 1960 to 2014. Additionally, wavelet coherence is applied to evaluate the
impact of climate (i.e., precipitation and temperature) change. Our results show: (1) due to climate change,
streamflow complexity has significantly increased since 1972 in the UHR watershed; (2) the periods of warmer
and wetter weather have a longer-term influence on streamflow complexity. Specifically, before 1972, dryer,
colder weather in the TP would significantly affect the complexity of the streamflow every three to four years,
but after that date, these climatic events occurred less frequently, with gaps of between eight and twelve years,
during which the weather was much warmer and wetter; and (3) the influence of precipitation on the streamflow
complexity decreased, while that of air temperature increased. Therefore, the impact of climate change on
streamflow complexity relating to the dynamic structure of streamflow should be regarded as significant to the
work of hydrologists and water resource management agencies.

1. Introduction

The Tibetan Plateau (TP), sometimes known as the “Asian water
tower,” is the origin of the major Asian rivers, Yangtze, Yellow, Indus,
and Ganges (Xu et al., 2008). It is also one of the most sensitive and
vulnerable regions on earth with regard to climate change (Brown et al.,
2007; Immerzeel et al., 2010). Streamflow from the headwater areas on
the TP continuously provides essential water resources that support the
habitation, socio-economic development, and ecosystem services of 1.4
billion people (Bibi et al., 2018; Milly et al., 2005; Oki and Kanae,
2006). Affected by anthropogenic activity, climate change, and the
landscape, streamflow exhibits typical nonlinear behavior, which varies
in both time and space (Parajka et al., 2013; Sivakumar, 2009;
Sivakumar and Singh, 2012; Zhang et al., 2016; Zhang et al., 2017).
Thus, the term “streamflow” represents a typical complex hydrological

system. “Streamflow complexity” is defined as the variability and un-
certainty of streamflow and reflects the dynamic structure of stream-
flow (Singh, 1997; Sivakumar and Singh, 2012). Therefore, measuring
streamflow complexity in the TP, and investigating its temporal
changes, is vital to improving our understanding of the hydro-
meteorological process, not just in the affected areas but across the
globe.

There have been numerous efforts to study streamflow complexity
in recent decades, ranging in scale from a single river to an entire
continent (Huang et al., 2017; Mihailović et al., 2019; Sen, 2009;
Serinaldi et al., 2014; Srivalli et al., 2019). Most studies concentrate on
streamflow complexity in the middle and downstream areas (Huang
et al., 2011; Srivalli et al., 2019; Stosic et al., 2016; Wang et al., 2020;
Zhang et al., 2012) rather than at the headwater, and information on
streamflow complexity at headwaters remains scarce, though these
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areas represent a critical stage in the hydrological cycle and land-sur-
face system.

Meanwhile, existing work looks at how streamflow complexity is
affected by human activity such as reservoir operations (Huang et al.,
2011; Liu et al., 2017; Zhang et al., 2019a), dam construction (Luo
et al., 2019; Stosic et al., 2016; Zhang et al., 2012; Zhou et al., 2012),
and land use/land cover changes (Li and Zhang, 2008; Liu et al., 2018).
In addition, researchers have used streamflow complexity as a metric
for the evaluation of hydrological changes (Jovanovic et al., 2017),
catchment classification (Sivakumar and Singh, 2012), and basin
complexity (Pande and Moayeri, 2018). However, the effect of climate
change on the streamcomplexity is unclear.

The streamflow complexity of the TP is significant due to the
mountainous landscape and sophisticated cryospheric changes in this
region. The headwater areas of the TP are typical alpine watersheds
with a wide distribution of permafrost, glaciers, and snow-covered
mountains. The snow and glacier melt not only provide critical water
resource to the downstream areas in dry seasons but also add to the
streamflow complexity (Huss and Hock, 2018; Singh and Bengtsson,
2005; Wulf et al., 2016). The lack of in situ observations and mea-
surements has restricted our understanding of the streamflow in
mountainous glacial alpine watersheds (Wang et al., 2019). To improve
our understanding of the hydrological system in the TP, it is crucial to
measure the streamflow complexity in the headwater areas of this re-
gion.

Furthermore, our understanding of the influence of climate change
on streamflow complexity is also insufficient. The TP as one of the
world’s regions with the most significant climate change (Chen et al.,
2015; Kuang and Jiao, 2016), is still lacking studies that investigated
the impact of climate change on sections of the streamflow complexity
in the TP. Observation data analyses and model simulations show that
the air temperature in the TP has increased significantly during the last
50 years (Kuang and Jiao, 2016; You et al., 2016; Zhong et al., 2011),
and the warming rate is twice the global average over the same period
(Chen et al., 2015). Meanwhile, despite the substantial spatial hetero-
geneity of precipitation on the TP, the overall precipitation has also
slightly increased (Kuang and Jiao, 2016). Compared with the air

temperature, the impact of precipitation on the streamflow complexity
has attracted more attention because of its significant role in the hy-
drological cycle (Chou, 2014; Huang et al., 2011; Pan et al., 2012).
However, the air temperature is also likely to affect the hydrological
cycle by changing the processes in the cryosphere, biosphere, and at-
mosphere (Cuo et al., 2015; Deng et al., 2017; Gao et al., 2018). In-
vestigating the impact of climate (i.e., air temperature and precipita-
tion) change on the streamflow complexity will also expand our
knowledge of hydrothermal interaction in cold and arid regions.

The impact of climate variables (i.e., precipitation and air tem-
perature) on streamflow complexity also has multi-timescale char-
acteristics (Liu et al., 2019). Chou found that the complexity of the
rainfall–runoff coefficient series, which indicates the pre-
cipitation–streamflow relationship, increased along with the increase of
scale factor (Chou, 2012). Huang et al. (2017) analyzed a streamflow
series and also found that the streamflow complexity increased from
daily to seasonal timescales. Streamflow, precipitation, and air tem-
perature individually also show different characteristics at diurnal,
monthly, seasonal, annual, and decadal timescales (Büntgen et al.,
2005; Jones et al., 1999; Sang et al., 2009; Sharifi et al., 2018; Su et al.,
2017). Given the lack of relevant works, new research probing the in-
fluence of precipitation and air temperature at multiple timescales is
necessary for additional insight into streamflow complexity.

This study has two main objectives: (1) to measure the streamflow
complexity and understand its changes in the headwater area of the TP;
and (2) to investigate the impact of climate change on the streamflow
complexity at multiple timescales. To achieve these objectives, we used
a capable and robust entropy-based measure, permutation entropy (PE)
to quantifying streamflow complexity in the TP. We also used the
Mann–Kendall test to evaluate the trends and change points of the
complexity, and wavelet transform coherence (WTC), which is a scale-
dependent and reliable method to analyze localized, scattered peri-
odicities of the influence of precipitation and air temperature. In par-
ticular, we focused on the upper Heihe River (UHR) basin, on the
northeast TP. The streamflow from the UHR basin accounts for ap-
proximately 70% of the total streamflow in the Heihe River.

The paper is organized as follows. In Section 2, we introduce the

Fig. 1. The upper Heihe River watershed, the position of the gauge station, and distribution of the meteorological stations.
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study area and data; in Section 3 we describe PE, the Mann–Kendall
test, and WTC; the main results of this study are presented in Section 4;
and finally, we provide discussion and conclusions in Sections 5 and 6,
respectively.

2. Study area and data

2.1. Study area

As the headwater of the Heihe River basin (HRB), the UHR wa-
tershed (Fig. 1) provides most of the water supply for the HRB–the
second-largest inland river in China. The two tributaries of the UHR, the
Babaohe River (BBR) and the Yeniugou River (YNGR), converge into
the mainstream and cross the Qilian Mountains at the Yingluoxia (YLX)
gauging station into the middle reaches of the Heihe River. The average
annual mean temperature in the UHR basin ranges from −9°C to 5 °C,
and the average annual precipitation exceeds 400 mm.

The UHR watershed is a typical alpine-glacial region with wide
distribution of permafrost and seasonal frozen ground. It locates in the
Qilian Mountains on the northeastern edge of the TP and has experi-
enced significant climate change. The climate in the UHR basin has
been getting warmer and wetter in recent decades. Tree ring-based
reconstructed temperature series suggest that the 20th century was the
warmest 100 years in the area’s history (Wang et al., 2016). Moreover,
the upward trend of the air temperature has become steeper since the
1980 s (Wang et al., 2010). Meanwhile, precipitation has also experi-
enced a significant increase at a rate of 1.04 mm/year from 1961 to
2016 (Zhong et al., 2019). In addition, glacier coverage areas in the
UHR have declined from 66.3 km2 in 1990 to 13.37 km2 in 2010,
generally attributed to climate change (Cai et al., 2014). The lower
limit of permafrost has climbed from 100 to 200 m, and the permafrost
has retreated 10–20 km along the major highways of the YNGR wa-
tershed since 1985 (Wang et al., 2017). The maximum thickness of the
seasonal frozen ground has also decreased by about 20 cm (Wang et al.,
2015).

2.2. Data

Data used in this study include daily streamflow records from 1960
to 2014 and climatic data (i.e., precipitation and air temperature) from
1960 to 2014. Daily streamflow records in the Yingluoxia gauge station
(coordinates: 38°49′12″N, 100°10′48″E; elevation:1700 m) were ob-
tained from the Environmental and Ecological Science Data Center for
West China (http://www.heihedata.org). The climatic data consists of
the daily mean air temperature and daily cumulative precipitation at
three national meteorological stations: Qilian (QL; coordinates:
38°10′48″N 100°15′0″E; elevation: 2787.4 m); Yeniugou (YNG; co-
ordinates: 38°45′48″N,99°36′00″E; elevation: 3314 m); and Tuole (TL;
coordinates: 38°49′12″N, 98°25′12″E; elevation: 3367 m). These were
downloaded from the National Meteorological Information Center of
the China Meteorological Administration (http://data.cma.cn). It is
worth noting that the precipitation data in this article include both
rainfall and snowfall. Because of a lack of observation data for pre-
cipitation, air temperature, or streamflow in individual years, we chose
1960–2014 as the joint period.

3. Methods

3.1. Permutation entropy

PE was proposed to finely measure the complexity of time series by
Bandt and Pompe (2002). Having no requirement for assumptions on
linearity or normality, entropy theory has been widely used to study
and understand hydrological systems (Singh, 1997; Singh, 2011). In
recent decades, various entropy methods have been employed to
measure streamflow complexity, such as sample entropy (Huang et al.,

2011; Wang et al., 2020), multi-scale sample entropy (Huang et al.,
2017; Li and Zhang, 2008; Zhang et al., 2012), wavelet-based entropy
(Sang et al., 2011), Shannon entropy (Castillo et al., 2015; Krasovskaia,
1995), and Kolmogorov entropy (Mihailović et al., 2014). In contrast to
these entropy measures, PE considers the ordinal pattern of the values
in a time series (Stosic et al., 2016). Due to its simplicity and robust-
ness, PE has attracted attention from researchers and been applied in
hydrology and other domains, including finance (Hou et al., 2017;
Zunino et al., 2009), meteorology (Zhang et al., 2019b), and bioinfor-
matics (Zanin et al., 2012). The calculation process of PE can be de-
scribed as follows.

A given time series = ⋯s i i N{ ( ), 1, 2, , }, S i( ) represents the em-
bedding vector + ⋯ + −s i s i τ s i d τ[ ( ), ( ), , ( ( 1) )], where d denotes the
embedding dimension and τ indicates the delay time. We can sort the
elements in vector S i( ) in ascending order as

+ − ≤ + − ≤ ⋯≤ + −s i j τ x i j τ s i j τ[ ( ( 1) ) ( ( 1) ( ( 1) )],d1 2 while the
series ⋯j j j{ , , , }d1 2 denotes the indices of elements in S i( ). In particular,
when there is equality in a time series, we can sort them according to
their original orders. For instance, if + − = +s i j τ s i j τ( ( 1) ) ( ( ) )t t1 2 and

<j jt t1 2, then these two elements can be sorted as
+ − ≤ +s i j τ s i j τ( ( 1) ) ( ( ) )t t1 2 . Therefore, the original vector S i( ) can

be mapped to a symbolic permutation = ⋯j j jΠ [ , , , ]d1 2 , which is one of
d! possible permutations. Assuming the number of unique permutations
is K, the probability of each Π denotes as ⋯p p p{ , , , }h1 2 . The PE of the
time series Si is computed as

∑= −
=

H d p lnP( )
h

K

h h
1

When = = ⋯= =p p p d1/ln( !)h1 2 , H d( )has the maximum
valueln d( !). Therefore, the PE can be normalized as

PE d H d
ln d

( ) ( )
( !)

A normalized PE is restricted between 0 and 1. PE close to zero
means the times series is a more deterministic increasing or decreasing
series. Conversely, a PE close to one means the time series is more
random and chaotic.

Before computing the PE of a time series, it is split into non-over-
lapping segments of short length, and then the PE of each segment is
computed. Changes in the PE measurements can be investigated to
explore dynamic change in a time series. The embedding dimension d
usually depends on the observed phenomenon. For useful statistics, it is
generally recommended to choose the maximum d according to >N d5 !
(Ribeiro et al., 2012). For this study, we computed the PE from the daily
streamflow records of the Yingluoxia gauge station for each calendar
year. The embedding dimension d and delay time τ were set to 4 and 1,
respectively.

3.2. Mann–Kendall test

The Mann–Kendall test (M−K test) is a nonparametric and robust
method for detecting trends in time series, originally proposed by Mann
(1945) and improved by Kendall (1975). Since it has been widely ap-
plied and verified in hydrological studies, we employed it to identify
the trends from the streamflow PE series. A detailed description of the
M−K test can be found in Hamed and Ramachandra Rao (1998) and
Sang et al. (2014).

3.3. Wavelet transform coherence

Wavelet transform coherence (WTC), which describes the coherence
of two time series, can be regarded as a localized correlation coefficient
between two time series in time and frequency space (Cazelles et al.,
2008; Grinsted et al., 2004; Torrence and Compo, 1998). Torrence and
Webster (1999) defined the WTC of two times series X and Y as follows
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where W s( )n
X and W s( )n

Y denote the wavelet transformation of X and Y,
respectively. W s( )n

XY denotes the cross-wavelet transformation of X and
Y. S is a smoothing operator depending on the wavelet used. In general,
the smoothing operator S for a wavelet is written as

= S S W sS(W) ( ( ( )))s t n

in which the Ss and St are smoothing along the wavelet scale axis
and the time, respectively. W s( )n denotes the wavelet transformation of
a time series where s indicates the wavelet scale factor. R s( )n

2 denotes
the value of WTC and ranges between 0 and 1. As with the correlation
coefficient, a value equal to zero depicts an independent two time
series, while the value equal to one depicts that the two times series
perfectly co-vary. We estimated the statistical significance level of the
WTC against a first-order autoregressive red noise series assumption
using Monte Carlo methods. In this study, the significance level was
0.05. It is worth noting that only the values outside the cone of influ-
ence (COI) are taken to estimate the significance level for each scale.
The COI indicates the areas in the wavelet coherence likely to be im-
pacted by the edge effect artifacts.

We chose the Morlet wavelet as the mother wavelet function owing
to its balance between time and frequency (Grinsted et al., 2004). More
details of this method of computing WTC can be found in the work of
Grinsted et al. (2004).

4. Results

4.1. Streamflow complexity in the UHR watershed

We applied a normalized PE measure on the daily streamflow re-
cords, daily mean air temperature, and daily cumulative precipitation
in the UHR watershed to each year from 1960 to 2014 (Fig. 2). In
Fig. 2a, the solid cyan, red, and yellow lines represent the annual PE of
the air temperature. The cyan, red, and yellow dashed lines represent
the annual PE of the precipitation. The blue line represents the PE of the
streamflow.

From Fig. 2, it can be seen that the complexity of the streamflow in
the UHR was a significantly nonstationary process that had a turning
point in the year 1972. The M−K test result showed an increasing trend
in the streamflow complexity (UF larger than 0 in Fig. 2) with the last
changing point in 1972. There was an increasingly fluctuating trend in
most years after 1980, in which the UF value was larger than the
threshold 1.96. This phenomenon coincided with increasing air tem-
perature in the eastern TP since the 1980s (Kuang and Jiao, 2016).

Therefore, we partitioned the PE series into two different periods:
from 1960 to 1972, and from 1973 to 2014. In the first period, the PE of
the streamflow experienced a process of dramatic increase followed by
a sharp decrease. The average PE value during this period was 0.84.
However, the PE values after 1972 were higher and relatively stable.
The average PE value after 1972 was 0.89. This result suggests that
after 1972 the dynamic features and structures of the streamflow in the
UHR become more complex.

Overall, the complexity of the streamflow is essentially the dynamic
between air temperature and precipitation. Notably, after 1972, the PE
of the streamflow was closer to that of the air temperature than before,
implying that the influence of the air temperature in the UHR wa-
tershed on the streamflow complexity may have increased after 1972.
Meanwhile, we found that even the lowest PE (0.73) of streamflow was
still higher than the PE of precipitation (i.e., QL:0.61, YNG: 0.65; TL:
0.51) in the corresponding year (1961). Additionally, it is worth noting
that the PE troughs of streamflow and precipitation did not always
occur at the same time. The upward results indicate that the streamflow
was a more complex, uncertain, and chaotic process than the pre-
cipitation in the UHR watershed.

We summarized the statistics (Table 1) and drew boxplots (Fig. 3) of
the PE of streamflow before and after 1972. Before 1972, the mean,
median, and quantiles of the PE of streamflow were located between
those of air temperature and precipitation. Moreover, the standard
deviation of the streamflow’s complexity was close to that of the pre-
cipitation, while the streamflow had the most extensive range of com-
plexity, which indicates that the streamflow complexity varied greatly,
more dramatically than the air temperature and precipitation, and its
variation was more similar to the complexity of the precipitation.

After 1972, however, it is clear that the statistics of the PE of
streamflow were higher and more stable than before, and the com-
plexity of the air temperature remained steady while the range of the
complexity of precipitation expanded. This result implies that the
streamflow complexity had increased and then stabilized in a “stale”
phase after 1972. Although the complexity of the air temperature was
relatively stable, the complexity of the precipitation varied greatly.
These changes in the streamflow complexity imply that the dynamic
structure and uncertainty of streamflow may have changed to more
complex and higher.

4.2. Impact of air temperature on streamflow complexity at multiple
timescales

To investigate the impact of the air temperature on the streamflow
complexity, we applied a WTC analysis of the annual mean air tem-
perature and annual normalized PE of the streamflow. Fig. 4 shows the
result. The black contours denote the 0.05 significance level against the
red noise. The shadow region denotes the COI. The small arrows denote
the relative phase relationship with in-phase pointing right and anti-
phase pointing left.

In Fig. 4, two different bands of wavelet coherence show between
the streamflow’s complexity and air temperature. For the streamflow
complexity, the wavelet coherence with the air temperature at three
stations depicts high interannual covariance over a series of 2–4-year
periods between 1962 and 1970 with the in-phase. However, the wa-
velet coherence between the air temperature and streamflow com-
plexity had a quasi-decadal period during 1994–2008 with the anti-
phase, with half of this region inside the COI. Considering the 5% high
significance level and the vast region of wavelet coherence, this quasi-
decadal period can extend to 1988–2012.

This result indicates that the influence of air temperature on the
streamflow complexity changes from a short timescale to a long time-
scale. The change from in-phase to anti-phase indicates that the re-
lationship between the air temperature and the streamflow complexity
had to transform from a positive to a negative relation. Additionally, we
noticed that the WTC disappeared at TL station (Fig. 4c), which may
imply that the role of air temperature in the marginal area of the UHR
watershed was weakening. Because air temperature can accelerate the
glacier melting rate, permafrost degradation, and the ratio of solid and
liquid precipitation, the indirect impact of temperature on the stream-
flow changed to more significant at the long timescale. But at the
marginal area, the impact of temperature was weak due to the high
latitude.

4.3. Impact of precipitation on the streamflow complexity at multiple
timescales

We also applied a WTC analysis to investigate the impact of pre-
cipitation on the streamflow complexity at multiple timescales. The
annual cumulative precipitation and the annual normalized PE of
streamflow were used. The result of the WTC between the precipitation
and the streamflow complexity is shown in Fig. 5.

The wavelet coherence between the precipitation and the stream-
flow complexity also exhibits two discrete regions. There is a 2–4-year
band of high covariance between 1964 and 1972, and the down arrows
indicate that the precipitation led to a streamflow complexity of
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approximately 90° (about 0.5–1 year). The WTC between the pre-
cipitation and the streamflow complexity also had a long-term 4–6-year
band between 1988 and 2006, and the up arrows indicate that the
precipitation led to a streamflow complexity of approximately 270°
(about 3–4.5 years). The results show that although the degree of
covariance between the precipitation and the streamflow complexity
slightly weakened after 1972, the timescales and range both sub-
stantially extended. In addition, we found that the influence of pre-
cipitation at TL station on the streamflow complexity was significantly
weaker than that at QL and YNG stations. This result is almost the same
as the air temperature and may imply that the weakening impact of
climate on the marginal area of the UHR maybe not be mere chance.

4.4. Climate change regarding the streamflow complexity

To further investigate the possible impact of climate change on the
observed shifts in streamflow complexity, we conducted a comparative
analysis between two specific periods. The WTC analysis, as mentioned
above, indicated that air temperature and precipitation both influence

Fig. 2. (a) The interannual variations of the PE of streamflow at Yingluoxia gauge station, the PE of air temperature, and the PE of precipitation at TL, YNG, and QL
meteorological stations. (b) M−K test of streamflow complexity.

Table 1
The statistics of the PE of streamflow, air temperature, and precipitation.

Years Permutation entropy of Station Mean Std Dev Range

1960 to 1972 Streamflow YLX 0.84 0.06 0.19
Air temperature QL 0.93 0.01 0.03

YNG 0.94 0.01 0.04
TL 0.93 0.01 0.04

Precipitation QL 0.63 0.03 0.09
YNG 0.68 0.03 0.08
TL 0.54 0.03 0.10

1973 to 2014 Streamflow YLX 0.89 0.02 0.09
Air temperature QL 0.93 0.01 0.06

YNG 0.94 0.01 0.06
TL 0.93 0.02 0.07

Precipitation QL 0.63 0.04 0.18
YNG 0.67 0.04 0.20
TL 0.54 0.04 0.16
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streamflow complexity, but their different phases show that the influ-
ence changed before and after 1971. According to the regions with high
WTCs of precipitation and air temperature, we chose 1964–1970 and
1988–2012 for our two comparative time periods.

To illustrate the air temperature and precipitation changes in the
UHR watershed, the annual mean air temperature and annual accu-
mulative precipitation anomalies relative to the 1960–2014 base period
were calculated. Fig. 6 shows the interannual variations of the air
temperature and precipitation anomalies, and the shadow regions in-
dicate the two time periods with high WTCs. Before 1972, most air
temperature and precipitation anomalies at the three stations were
negative except for some discrete years. Additionally, two low air
temperature anomalies appeared during the 1964–1970 period with

high WTCs. The results demonstrate that a coupling impact of unusual
low temperature and normal precipitation may create variations in
streamflow complexity.

However, more continuous and marked anomalies of air tempera-
ture and precipitation occurred after 1972, and especially after 1988.
Besides, there were clear rising plateaus of air temperature anomalies at
all three stations and two distinct rising plateaus of precipitation
anomalies at the YNG and TL stations. Interestingly, the rising plateaus
all emerged when the air temperature and precipitation had sig-
nificantly high WTCs with the streamflow complexity. These results
suggest that there is a relationship between climate change and
streamflow complexity.

Table 2 provides the multi-year average annual air temperature
(MAAT), multi-year average annual precipitation (MAP), average air
temperature anomalies (AATA), and average precipitation anomalies
(APA) during the two periods with high WTCs. It shows that all the
average annual air temperatures at the three stations were relatively
low and their anomalies were negative during 1964–1970 and the
anomalies of average annual precipitation were also negative. This re-
sult suggests that the area experienced a colder and drier process during
this period. During 1988–2012, all the average annual air temperatures
and the average annual precipitation figures at the three stations were
positive and increased from 0.86 to 1.15 °C and 12.2–61.04 mm, re-
spectively. These results suggest that the climate began to be warmer
and wetter during 1988–2012.

5. Discussion

The streamflow complexity of the UHR watershed was measured
using PE based on 55 years of data on an annual scale. Although many
studies have focused on the influence of climate change on streamflow
or water availability (Barnett et al., 2005; Naz et al., 2018), few have
looked into the impact of climate change on the streamflow complexity.
However, the relationship between precipitation and streamflow com-
plexity has been discussed more (Chou, 2014; Huang et al., 2011)
though only a limited number have investigated how air temperature
change impacts streamflow complexity in inland alpine glacier regions.
The results in this paper show that air temperatures also have a critical
influence on stream complexity in a glacial alpine watershed.

First, the streamflow complexity was shown to have changed in
1972, which is highly likely to be due to climate change. The changes in
streamflow complexity were distinct and, generally, detected in rivers
affected by dam constructions (Stosic et al., 2016) and reservoir op-
erations (Zhang et al., 2019a). As there were no large-scale dam con-
structions in the UHR watershed during the research period or other
disturbances of the land use/land cover, this change was likely due to
climate change in the region. Several studies have reported variations
in the streamflow caused by climate change in the UHR since the 1980s

Fig. 3. Boxplots of the PE of streamflow (Q), air temperature (AT), and pre-
cipitation (P) during 1960–1972 (a), and 1973–2014 (b).

Fig. 4. WTC between the streamflow’s complexity and air temperature at QL (a), YNG (b), and TL (c) stations in the UHR watershed.
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(Cai et al., 2014; Gao et al., 2018; Luo et al., 2016). Our results also
show that after 1972, and especially after 1988, the air temperature and
precipitation had long-term significant covariance with the stream
complexity. Meanwhile, the air temperature showed an upward trend at
the watershed, and precipitation increased (Fig. 6). Therefore, climate
change not only altered the volume of streamflow but also played a
critical role in changing the streamflow complexity. This find means
that the temporal distribution of streamflow also can be altered by

climate change. Hence, it is critical for water management agencies of
the arid and semi-arid areas, which are very sensitive to the temporal
distribution of water resources, to pay attention to the distribution
changes of daily streamflow to improve better water resource regula-
tion.

Second, air temperature impacted the streamflow complexity to a
weaker degree but across longer timescales than precipitation. The
periods of higher air temperature and precipitation began to increase

Fig. 5. WTC between the streamflow complexity and the precipitation at QL (a), YNG (b), and TL (c) stations in the UHR watershed.

Fig. 6. Interannual variation of the air temperature anomalies (orange) and the precipitation anomalies (blue) of stations QL (a), YNG (c), and TL (c); Dashed lines
indicate the linear trends.
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from around three to four years until they reached record lengths of up
to twelve years.

A comparison of the two results of WTCs between air temperature
and precipitation on streamflow complexity showed that, although the
degree of influence of air temperature significantly increased, it was
still relatively weaker than that of precipitation. The complex hydro-
meteorological processes may have caused a longer timescale and
weaker influence of air temperature in the alpine glacier watershed.
Increasing air temperature can affect the streamflow in the UHR in
three typical ways: (1) it can accelerate the rate of glacier melting and
positively affect the streamflow in glacierized watersheds (Barnett
et al., 2005; Bibi et al., 2018); (2) it can lead to permafrost degradation
and then affect the streamflow through the increase of base flow (Cuo
et al., 2015; Qin et al., 2016); and (3) it can change solid precipitation
to liquid precipitation, resulting in a decrease in snowpack and earlier
snowmelt (Barnett et al., 2005; Berghuijs et al., 2014; Deng et al.,
2017). Since all three are indirect and cover multiple land-surface
processes, the impact of air temperature on streamflow complexity is
weaker than for precipitation.

Additionally, the clearly weakened WTCs between the air pre-
cipitation, the precipitation at the TL station, and the streamflow
complexity can be explained from two perspectives. On the one hand,
the TL station is located far from the mainstream and tributaries and
closer to another sub-watershed, and this could be why the effects of
climate variables there decreased after 1988. On the other hand, the
extremely low temperatures and low precipitation climate events
highly likely caused the significant WTCs between the air temperature,
precipitation at the three stations, and the streamflow complexity
during 1964–1970. Hence, the significant relationship between the
climate variables at the TL station and the complexity of stream is
evident for the large-scale extreme climate event.

Notably, the results in this study did not consider all the possible
affecting factors for the change of streamflow complexity, such as ve-
getation variation and land use/land cover change. More influencing
factors and their combination with climate change will be discussed in
the future. It is important to emphasize that the streamflow complexity
showed low WTC with the air temperature, and the precipitation may
be caused by the low degree, or slowly developing trend, of climate
change from 1972 to 1988.

6. Conclusions

In this study, we applied PE to measure streamflow complexity at
the headwaters of the UHR watershed on the northeastern TP. We
found that the streamflow complexity in the UHR watershed had sig-
nificantly increased since 1972 and could be explained by climate
change. The increase of streamflow complexity in the headwater area
on the TP had not been uncovered in previous studies. Before 1972,
periods of low precipitation and very low air temperatures occurred
every 3–4 years. However, after 1972, and especially after 1998,
greater precipitation and higher air temperatures over longer periods
have impacted streamflow complexity. Therefore, climate change has
not only altered the streamflow but also increased its complexity. Our
results indicate that the dynamic structure and features of streamflow
have been transformed by climate change in the UHR watershed and

this may well have significance for water resource management agen-
cies and researchers investigating streamflow complexity in other
headwater areas across the globe.
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