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A B S T R A C T

In recent years, the sustainable utilization of China’s arable land has been confronted with several challenges.
The China government has been very strict in arable land protection, and a package of policies and measures
have been promulgated. All these endeavors are of great significance for proposing an innovative policy system
for sustainable land use in China. However, above stated policies are all designed from the perspective of space
control with the purpose of reducing arable land loss or increasing arable land area, few policies have been
designed from the perspective of utilization control, namely guide the actual arable land farming in sustainable
ways and constraint unreasonable land use behavior such as overuse, rough use, land abandonment. In this
paper, we analyze spatial distribution of average land-use intensity (ALUI) at the county-level in Mainland
China, which can be used as a significant index for evaluating the rationality of arable land use and providing
effective decision-making supporting information for design of regional arable land protection policy. Based on
the experimental results, there is still considerable room for yield improvement as the ALUI of ∼73.1 % counties
are lower than 0.7 while the 53.60 % counties are lower than 0.6. Furthermore, the ALUI dataset shows sig-
nificant global spatial autocorrelation characteristic. Boundaries of regions that aggregated by counties with
high ALUI are more consistent with that of provincial administrative districts, comparing with that of sub-
standard farming system regions. On the other hand, counties with low ALUI are mostly cluster in mountains,
hills, or plateaus, where grain yield is mainly limited by regional hydrothermal conditions. In addition, counties
with different ALUI status have been divided into six classes, using k-means clustering algorithm. This will
facilitate the understanding of appropriate arable land protection and utilization paths for different regions and
the rethinking of current support policies on farmland protection.

1. Introduction

Food security has been a concern worldwide since it is a funda-
mental requirement for human survival and development (Rosegrant
and Cline, 2003). Despite this, nearly one billion people regularly fail to
consume sufficient calories to lead active healthy lives (Food and
Agriculture Organization (FAO, 2012). Due to rising population and
income, the United Nations Food and Agriculture Organization (FAO)
projects a growth in the global food demand by ∼70 % from 2000 to
2050 (Alexandratos and Bruinsma, 2012), while Tilman et al. (2011)
projects a growth of 100–110 %. In 2019, IPCC “Climate Change and
Land Report” points out that the degradation of arable Land endangers
food security and aggravates climate change. Sustainable use of arable

land plays an important role in reducing soil erosion, eliminating
hunger and coping with climate change. This poses a daunting chal-
lenge for scientists and policymakers around the world, namely how to
protect the stability of arable land ecosystems and meet sustainable
agricultural and socio-economic development while increasing food
production (Coyle et al., 2016; Valujeva et al., 2016). As a country of
huge population and scarce per capita land resources, food security in
China has been the focus of several researchers and scholars for a long
time (Cheng et al., 2014). Despite rapid urbanization and the loss of
high-quality farmlands, China has been making efforts to feed 21 % of
the world’s population with 7% of the world’s arable land (Jin et al.,
2018). Moreover, it has made outstanding contributions to the United
Nations Millennium Development Goals in its efforts to reduce poverty
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and increase food production (UNICEF, 2014; Deng et al., 2015). In this
situation, exploration of arable land sustainable utilization path in
China is significant for sustainable human development and national
stability.

With rapid urbanization in recent decades, arable land gradually
become focal points of contradictions among population, natural re-
sources, environment and economic development of China (Bai et al.,
2014). Chinese government attaches importance to protecting arable
land, and regard “treasuring and employing every inch land, protecting
arable land” as national basic policy. According to the strictest arable
land protection system, a package of policies and measures including
‘requisition-compensation balance of arable land’, ‘rural land con-
solidation’, ‘economical and intensive land use’, ‘National land con-
solidation planning (2011–2015)’ have been promulgated. Inspite of
some disadvantages (e.g., occupied arable land is always more pro-
ductive and larger than supplementary arable land (Gao et al., 2018);
regardless of peasants’ real need and concern (Liu and Li, 2017); lacks
overall planning, theoretical guidance and systematical technical sup-
port (Li et al., 2018); lagging rural institutional innovation and rural
land protection mechanism (Cheng et al., 2019), all these endeavors are
of great significance for proposing an innovative policy system for
sustainable land use and economic development in China in the future
(Liu, 2018a). However, above stated policies are all designed from the
perspective of space control with the purpose of reducing arable land
loss or increase arable land area, another serious problem that threa-
tening the sustainable use of arable land has been long-term lack of
attention and policy control, namely arable land degradation.

Arable land degradation is the result of comprehensive effect of
natural system and utilization system, which contains not only natural
factors and socio-economic factors that affect arable land productivity,
but also the unstable factors caused by human activities. The un-
reasonable use of arable land and the overemphasis on grain yield are
important reasons for arable land degradation. In last four decades,
overuse of fertilizer, herbicides and pesticides, promotion of heavy
agricultural machinery equipment and high multi-cropping degree have
induced continuous increase of arable land-use intensity and grain
output at the expense of serious arable land degradation including
decrease in soil organic matter content (Zhao et al., 2013), serious soil
erosion and nutrient loss (Fan et al., 2005), increased soil acidification
and pollution (Liu, 2016a,b), decay of soil bio-characteristics and ex-
pansive soil salinization area. While conservation tillage strategies such
as crop rotation, deep plowing do not receive enough attention. In
consequence, innovative arable land protection policies and im-
plementing schemes should be promulgated with considering many
factors including regional climatic conditions, soil properties, cultiva-
tion and site management technologies, farming willingness, economic
benefits, ecological capacity, environmental status, etc. as well as the
interactions among them (Ye et al., 2019), for guiding and restraining
peasants to adopt sustainable farmland management strategies and
farming intensity.

Land-use intensity can be a significant index for evaluating the ra-
tionality of arable land use and providing effective decision-making
supporting information for design of regional arable land protection
policy from the perspective of utilization control. Research on land-use
intensity reaches back to the mid-19th century when Malthus (1798)
explicitly addressed agricultural intensification in the context of po-
pulation growth. Brookfield (1993) defined agricultural intensification
as the substitution of inputs of capital, labour and skills for land, so as to
gain more production from a given area, use it more frequently, and
hence make possible a greater concentration of production. In early
studies of agricultural intensification, land-use intensity is rooted in the
land rent theory (von Thuenen, 1826) and the law of diminishing
(Ricardo, 1815), and measured in terms of production inputs (pesti-
cides, fertilisers, seed, fuel or labour) or outputs per unit of land.
Subsequently, land-use intensity researches gradually focus on different
topics including drivers of agricultural change, potentially detrimental

ecological consequences of land-use intensification and systemic in-
terrelation between intensification and land expansion (Erb et al.,
2013). This situation renders an explicit valuation of the benefits and
trade-offs of land-use intensification important and calls for innovative
ways of measuring and assessing intensification (Tilman et al., 2011;
Foley et al., 2011). Nevertheless, how to calculate arable land-use in-
tensity with distinguishing influence of human activities from climate
conditions and apply it to develop detailed arable land management
strategies?

Given the complexity of land-use intensity, methods are proposed
from multidimensional perspective to measure it for different purposes,
which can be summarized into four aspects (Erb et al., 2013;
Kuemmerle. et al., 2013): input intensity (Shao et al., 2006; Zhang
et al., 2008b; Chen et al., 2011; Yin et al., 2019; Liu et al., 2014a, b;
Wang et al., 2014; Yao et al., 2014; Xie et al., 2014), output intensity
(Turner and Doolittle, 1978; Hunt, 2000; Shriar, 2000), combined of
inputs and outputs (Feon et al., 2010; Smith, 2013; Liu, 2016a,b) and
altered ecosystem services (Reidsma et al., 2006; Niedertscheider et al.,
2016; Stjernman et al., 2019).There into, output intensity is more ap-
plicable to express the exploitation degree of arable land potential as it
represents the purpose of cultivation (Turner and Doolittle, 1978; Hunt,
2000;) and no presumptions about the efficiency of inputs on pro-
ductivity are made (Shriar, 2000). However, comparability is limited if
output intensity is directly defined as annual crop yield per land unit
due to the huge yield variation of different crops, climate conditions,
soil conditions, crop management history. Results of output intensity
also strongly depend on the unit of measurement (e.g. in mass, energy,
calorific value, monetary value per area) and the methodology used to
measure output consistently (Hunt, 2000). To manage this compar-
ability better, methods have been developed that assess the ‘yield gap’
as the ratio between actual yield (observed yields) and a reference yield
that is attained under similar conditions of production and standardized
management (Neumann et al., 2010; Dietrich et al., 2012). Reference
yields can either be derived by statistical analysis or crop models
(Dietrich et al., 2012), whereas such data are usually not readily
available or are often connected to considerable uncertainty. (Erb,
2012; Siebert et al., 2010). Statistical data are frequently only available
at the national scale, systematic ground-based data collection covers
only a few regions since manual investigation is costly and inefficient,
and remote sensing struggles to capture the often subtle spectral effects
of land use intensity changes (Kuemmerle. et al., 2013). Dietrich et al.
(2012) calculates reference yields in a global context by using the
“Lund-Potsdam-Jena dynamic global vegetation model with managed
Land” (Bondeau et al., 2007), while especially crop models typically
suffer from systematic errors and biases caused by the high complexity
of the modeled system. Hence, relevant researches rarely work out
uniformly county level comparable output intensity in nationwide
studies.

In this paper, we calculate land-use intensity (LUI) as the ratio of
actual investigated yield (per unit) of specific arable land plot to the
maximum yield (per unit) of the standard farming system sub-region it
belongs to. And then we analyze the spatial distributions of the average
land-use intensity (ALUI) and relative standard deviation of land-use
intensity (VLUI) of China’s arable land at the county level and their
correlations with arable land area (ALA) in Mainland China. The ex-
ternal farming conditions (including soil properties, cultivation, and
site management technologies) and internal farming willingness are
then comprehensively expressed. Counties with different ALUI-VLUI-
ALA status have been divided into six classes using k-means clustering
algorithm, to facilitate the understanding of relatively appropriate
arable land protection and utilization paths and strategies for different
regions, as well as developing utilization control policies on farmland
protection. Furthermore, this research can provide effective decision-
making supporting information for implementation of “store grain in
the ground, store grain in technology” strategy.
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2. Material and methods

2.1. Data source

In recent decades, the Ministry of Natural Resources of China has
launched national field-scale evaluation of arable land productivity
project (Cheng et al., 2014; GB/T, 28407-, 2012; Wang and Yun, 2011;
Gao and Ma, 2002) based on “the second national land survey” as well
as a cumulative investment of ∼0.43 billion RMB and 1.3 million in-
vestigators. Thus, a uniformly comparable multi-factor spatial pattern
of arable land in Mainland China (Zhang et al., 2008a; Kong et al.,
2013; Feng et al., 2014; Wu et al., 2008c) has been achieved for the first
time. Considering that China has a vast territory with diversified factors
that impact arable land productivity, the whole territory is divided into
12 standard farming system regions (SFSR) and 51 sub-regions (sub-
SFSR) in the first step of this research according to spatial heterogeneity
of regional hydrothermal conditions (An et al., 2002). Suitable cropping
systems are then developed for different counties based on regional
socio-economic conditions and crop type as well as structure char-
acteristics (An et al., 2002). In the design process, this research com-
plies with the standard which stipulates that “the designed cropping
system can take full advantage of regional arable land production po-
tential on the premise of not damaging the sustainability of arable land
use” (An et al., 2002). For instance, Changsha city of Hunan Pro is lo-
cated in Jiangnan district (SFSR) – a western hilly region (Sub-SFSR).
The suitable cropping system of its irrigable land is designed as oilseed
rape –early rice –late rice (three crops per year), while the cropping
system of its dry land is corn–potato (two crops per year). Thus, four
modules (i.e. climate conditions module, nature quality mark module,
utilization coefficient module and economic coefficient module) have
been adopted in the evaluation of the arable land productivity (see SI
Appendix A.1 for details). The evaluation unit is arable land plots.

Thereinto, utilization coefficient module is designed to calculate
arable land-use intensity K as the ratio of actual investigated yield (per
unit) of specific arable land plot to the maximum yield (per unit) of the
sub-SFSR (extracted from 2005 to 2010 county-level statistical year-
book) it belongs to (Zhang et al., 2002; Kong et al., 2008a). This ratio
can objectively and comprehensively express the external farming
conditions (including soil properties, cultivation, and site management
technologies) and internal farming willingness of different arable land
plots. Computational formula of K is listed in Eq. (1). i is coefficient
for converting yield per unit of specific species of crop i to a uniform
crop (Kong et al., 2008b, 2009; Wang et al., 2006); Yi and Yi max re-
spectively are actual investigated yield (per unit) and maximum yield
(per unit) of crop i; and n is crop count.
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In this paper, arable land plots-based LUI dataset generated by the
above-mentioned utilization coefficient module has been used as the
experimental data. The quantity of plots is ∼67 million, and the re-
levant actual yield (per unit) data is investigated during 2011–2012.
Detailed dataset information has been listed in Table. 1.

2.2. Spatial autocorrelation analysis model

Spatial autocorrelation is commonly used to measure the correlation
of the same spatial variable in different spatial positions. It describes
the spatial aggregation of its attribute values, including global spatial
autocorrelation and local spatial autocorrelation (Legendre, 1993; Ord
and Getis, 2001). Both Moran’s I and LISA (local indicators of spatial
association) are conventional spatial autocorrelation indexes that use
the same principles. However, their scope of application and focus are
different. The global spatial autocorrelation (Moran's I) evolved from
Pearson correlation coefficient. The relationship between the two Ta
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variables x and y in Eq. (2) is expressed by x , while the corresponding y
value is replaced by the adjacent x value. Moran's I can then be ob-
tained with a slight modification (Eq. (3)), where wij is a spatial weight
matrix. If the regional units i and j are adjacent, the value of wij is 1;
otherwise, its value is 0; xi and x represent the value of the variable x
in the unit i and the mean value in the entire study area, respectively; N
represents the total number of regional units. The calculated Moran's I
value ranges from [−1:1]. Meanwhile, the positive value of I indicates
positive correlation; the negative value of I indicates negative correla-
tion; while the zero value of I indicates uncorrelation. Moreover, the
greater the absolute value, the higher the significance.

=Pearson
x x y y

x x y y
( )( )

( ) ( )
i i i

i i i i
2 2 (2)

=Moran s I N
w

w x x x x
x x

( )( )
( )ij ij

i j ij i j

i i

'
2

(3)

Under the normal distribution hypothesis, Moran's I is normalized
for significance test. Z(I) is a normalized statistic (Eq. (4)), where E(I) is
the expected value of Moran's I; σ(I) is the standard deviation of
Moran's I for all variable values. At 5% significance level, if Z(I) > 1.96,
there is a positive correlation in the study subjects; if −1.96 < Z(I) <
1.96, there is no spatial correlation in the study subjects such that they
exhibit a random distribution state; if Z(I) < −1.96, there is a negative
correlation.

=Z(I) [ I E(I)]
(I) (4)

The global spatial autocorrelation hypothesis space is stationary,
i.e., only a state fills the entire region, and it can only detect whether
there is spatial correlation in the whole study area. Thus, it is im-
possible to accurately locate the aggregation area (Getis and Ord,
2010). It is therefore necessary to detect the aggregation area using a
local spatial autocorrelation index (such as LISA) to reflect the degree of
association between the same attribute value of one regional unit and
the adjacent unit (Anselin, 1995; Anselin et al., 2006). The local spatial
autocorrelation index is defined as ILISA i (Eq. (5)), where Zi indicates
the degree of deviation between the observed value and the mean value
(Eq. (6)), and Ii is the weighted average product of Zi and the unit
observations around the unit i.

=
=

I Z W ZLISA i i
j

n

ij j
1 (5)

=Z x x
x x( )

i
i

n i i
1 2

(6)

2.3. k-means clustering algorithm

The k-means clustering algorithm was originally derived from a
vector quantization method in signal processing and is one of the most
widely used algorithms in cluster analysis (MacQueen, 1967). The al-
gorithm is easy to describe, and its processing efficiency is high in large
datasets. Moreover, it can produce a good clustering result when the
sample distribution is close within the classes and far away between the
classes. It has been widely used in soil analysis and natural language
processing at home and abroad (Wilpon and Rabiner, 1985; Kanungo
et al., 2002; Brus et al., 2006). The core idea is to divide n samples into
k cluster categories, minimizing the sum of the square distance of each
sample with its cluster center, i.e., within-cluster sum of squares is the
smallest sum that satisfies the clustering result (Eq. (7)), where x is the
sample value; Y is the category set; yj is a category in the category set,
and zj is the cluster center in the category yj.

=
arg min x z|| ||Y

j

k

x y
j

1

2

j (7)

The algorithm steps are as follows:

i Determine the appropriate number of categories k based on prior
knowledge. The category set Y is {y y y,., k1 2 };

ii The observation sets {x x x x, , ,., n1 2 3 } are the known samples while the
optional k samples are given as the initial cluster center {z z z,., k1 2 },
corresponding to k number of categories;

iii Calculate the distance between the sample xi and each cluster
center zj. Determine the closest cluster center zj, and assign xi to the
category yj to which zj belongs;

iv After all samples are allocated, the samples in each category yj
(j=1, 2, …, k) are recalculated to obtain a new cluster center zj ;

v Finally, if all the category center positions {z z z,., k1 2 } remain un-
changed and the results tend to converge, then the output category
set is {y y y,., k1 2 }. Otherwise, go to step (iii) for further iterative cal-
culations until the classification result converges.

2.4. Calculation of arable land-use intensity

In this study, we use outputs-oriented method to evaluate arable
intensity of arable land plots in Mainland China. Fig. 1 expresses con-
notation and calculation thought of arable land-use intensity (LUI).
Theoretically, LUI should be considered as the ratio of actual in-
vestigated crop yield (per unit) to theoretical capacity (per unit) (Zhang
et al., 2002). It indicates that arable land plot is completely utilized if
LUI is approximately equal to 1. While in practice, we replace theore-
tical capacity with maximum yield of the sub-SFSR it belongs to be-
cause the former is difficult to be estimated accurately (Kong et al.,
2008a).

2.5. Statistics of ALUI-VLUI-ALA

The ALUI, VLUI and ALA of ∼67 million arable land plots are cal-
culated using county as a statistical unit, to analyze the histogram
distribution features and spatial patterns of them as well as the pairwise
correlations among them. Eq. (8) expresses the calculation process of
ALUI, VLUI, and ALA for a specific county j, where Li represents the
area of each arable land plot i in county j (unit: ha.), n represents plot
quantity of county j, Ki represents LUI of each arable land plot, VLUIj
represents the dispersion degree of Ki in county j (for each county, the
lower the VLUIj, the more similar Ki is).
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2.6. Experimental environment

An Arable Land Productivity Data Applied Analysis Platform
(ALPDAAP) has been constructed to support the massive data proces-
sing and analysis of the polygon-based unstructured arable land pro-
ductivity data. Fig. 2 shows the logical architecture of the ALPDAAP
infrastructure, including the data storage layer, network transportation
layer, computing service layer, and application layer. In the data sto-
rage layer, the distributed metadata model-based file system was de-
ployed on two name nodes and six data nodes. The arable land pro-
ductivity data processing (e.g., coordinate transformation (Ye and Yan,
2016a), re-organization (Ye, 2016b; Ye et al., 2018), and visualization
(Yao and Ye, 2017b)) are directly executed between computing service
machines and data nodes, while name nodes are only used for metadata

S. Ye, et al. Land Use Policy 99 (2020) 104845

4



management and data addressing. The storage capacity is 200 TB, and
both name nodes and data nodes can be horizontally extended. In the
network transportation layer, gigabit switches and CAT6 cables were
used for data reading, analysis, and outputting, while optical fibers
were deployed for the arable land productivity data download. In the
computing service layer, a MapReduce-based computing cluster invol-
ving five computers was established for parallel data extraction and
statistics (Yao et al., 2017a, 2018). Meanwhile, the application layer
integrates the task request interface and result output interface.

3. Results

3.1. Spatial pattern and correlation of ALUI-VLUI-ALA

Since the same sub-SFSRs share similar topographic features and
hydrothermal conditions, the ALUI can eliminate the impact of climatic
conditions on arable land productivity, objectively and comprehen-
sively express external farming conditions (including soil properties,

cultivation, and site management technologies) and internal farming
willingness of different arable land plots, which is uniformly compar-
able in the national scale. Fig. 3 shows the normal distribution char-
acteristics of ALUI in Mainland China, where the mean value μ =
0.58946 and standard deviation = 0.18105. Despite the fact that
China’s food self-sufficiency ratio reached more than 95 %, there is still
a significant room for yield improvement. The ALUI of ∼68.2 %
counties belong to [ +µ µ, ] and is lower than 0.6 for 53.60 %
counties. Moreover, it is lower than 0.7 for ∼73.1 % counties. By set-
ting [ + +µ µ µ µ µ1.96* , , , , 1.96* ] as interval, we divide
the ALUI of all counties into six levels to obtain the spatial pattern of
ALUI. From an overall perspective, the spatial pattern of ALUI shows
significant differences between China’s eastern and western regions.
Counties with ALUI higher than 0.5895 are mainly distributed in east of
Hu’s line (Hu, 1935) (e.g., Heilongjiang, Zhejiang, Jiangxi, Guangxi,
Guizhou, Shaanxi, Henan, Hubei, Chongqing), and form accumulation
regions of highly utilized arable land in Heilongjiang Pro, Jiangsu Pro,
Hubei Pro etc. However, there is distinct “depressions” feature in

Fig. 1. Connotation and calculation thought of LUI.
Note: for a region over a period of time, its theoretical capacity is theoretical grain output capacity under the comprehensive input of natural capacity and technical
capacity.

Fig. 2. Logical architecture of ALPDAAP infrastructure.
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Hunan Pro, Anhui Pro, Hainan Pro, and Shanxi Pro, as the ALUI of the
counties is significantly lower than the surrounding provinces. Hence, is
there some correlation between ALUI dataset and its corresponding ALA
dataset and VLUI dataset?

Based on the statistical histogram features of ALA (Fig. 4a), the ALA
dataset conforms to the law of heavy-tailed distribution (Jiang and Liu,
2012a). Few counties (low frequency) have extremely large ALA (and
therefore form the head counties), while the ALA of abundant counties
(high frequency) are less than that of the head counties and therefore
constitute the tail. Influenced by Gaussian mode of thinking, traditional
classification methods focus on high frequency events (HF-Es) and se-
parate low frequency events (LF-Es) from these HF-Es. However, there
are significant faults between HF-Es (with different levels) and LF-Es,
which form the basis of natural classification (Fisher, 1958). Mean-
while, for heavy-tailed distributions, LF-Es tend to be more important
and more noteworthy than HF-Es (e.g., there are rare extreme events in
natural and social systems which are commonly known as “black swan
events” (Taleb, 2007)). Furthermore, for heavy-tailed distributions,
first-order mathematical expectation and second-order variance have
no mathematical significance, which render the classification methods
(Fisher, 1958; Jenks, 1963) based on these indicators inapplicable.
Hence, we divide the ALA of all counties into six levels using head/tail
breaks model (Jiang, 2012b), as shown in Fig. 4b (see SI Appendix A.2
for detailed classification process). Moreover, we also analyze the
spatial pattern of ALA in SI Appendix A.3. The correlations between
normalized ALUI/VLUI and normalized ALA are analyzed, as shown in
Fig. 5c and d, respectively. Based on the experiment result, there is no
significant correlation between ALUI/VLUI and ALA, especially for

levels 1–5. Hence, ALA is not a critical factor that affects ALUI and
VLUI. Moreover, counties with extremely large ALA (level 6) are more
likely to have high ALUI and low VLUI, which constitute core regions of
arable land use.

The histogram distribution of VLUI is roughly normal with high
skewness and kurtosis. Using Geodetector model (Wang et al., 2010,
2016), we progressively divide the VLUI of all counties into four levels,
as shown in Fig. 5a (see SI Appendix A.4 for detailed classification
process). Fig. 5b shows the correlation between VLUI and ALUI. Most
counties have low VLUI (namely ALUI of arable land plots in these
counties have small differences). Only a few counties express relatively
high VLUI (levels 3–4), whose corresponding ALUI are generally low.
Furthermore, for counties with high ALUI, the farming conditions and
willingness of their internal arable land plots are more likely to be
consistent. While for counties with low ALUI, things get more compli-
cated. Hence, VLUI can be used as an important indicator for devel-
oping regional appropriate arable land protection and utilization paths,
especially for counties with low ALUI.

3.2. Spatial autocorrelation analysis of ALUI-VLUI

In this paper, we used Moran’s I model and LISA model to analyze
global and local spatial autocorrelation of ALUI, respectively. In
Mainland China, the county-based ALUI dataset shows significant
global spatial autocorrelation characteristic (Moran’s I is 0.700825,
Z=76.0677, P=0.001), as shown in Fig. 6. It indicates that for
counties with high ALUI, their contiguous counties also tend to have
high ALUI and form high-high concentration (HHC), and vice

Fig. 3. Normal distribution characteristic and spatial pattern of ALUI. Blank area expresses few arable land (e.g. Qinghai-Tibet Plateau, urban region) or no data (e.g.
Taiwan).
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versa–form low-low concentration (LLC). The HHC region mainly
covers nearly all the regions of Heilongjiang Pro, Jiangsu Pro, Hubei
Pro, Zhejiang Pro, and central-north area of Henan Pro, Guizhou Pro,
etc. In addition, boundaries of HHC regions are more consistent with
that of provincial administrative districts, comparing with that of sub-
SFSR. The reason is that local government is playing an important role
in improving land-use intensity. For instance, the Huanghuai Plain sub-
SFSR covers part counties of Jiangsu Pro, Anhui Pro, and Henan Pro.
Although these counties share similar hydrothermal conditions, their
ALUI accumulation characteristics in different provinces may be op-
posite: form HHC northern Jiangsu Pro and eastern Henan Pro, and
form LLC in northern Anhui Pro (see SI Appendix A.5 for details). In
addition, the terrain of Zhejiang Pro is complicated as it consists of
northern Yangtze plain sub-SFSR, western low mountainous sub-SFSR,
southern mountainous sub-SFSR, and eastern low hilly sub-SFSR. There
are relatively large differences in hydrothermal conditions and external
farming conditions among these sub-SFSRs. However, the HHC pattern
is not affected by these differences and covers nearly the whole pro-
vince. (see SI Appendix A.6 for details). Therefore, the formation of
HHC characteristic is more likely to be influenced by the composite
effect of provincial policy, administration management methods as well
as social and economic conditions. In some cases, this effect may cover
up the climate effect. On the other hand, LLC regions of ALUI are
mainly distributed in Yunnan Pro, Hainan Pro, Shanxi Pro, Xinjiang
Pro, southern Sichuan Pro, southern Hunan Pro, northern Anhui Pro,
eastern Inner Mongolia. The relevant landscape types of these regions
are mostly mountains, hills, or plateaus, where grain yield is mainly

limited by regional hydrothermal conditions. Thereinto, Anhui, Si-
chuan, Hunan, and Inner Mongolia belong to major grain producing
provinces of China.

Furthermore, the global spatial autocorrelation characteristic
(Moran’s I) of county-based VLUI dataset is 0.467822 (Z=54.488,
P= 0.001) (Fig. 7). HHC regions of VLUI are mainly distributed in
Yunnan Pro, Hainan Pro, Hebei Pro, southern Sichuan Pro, eastern
Inner Mongolia, eastern Gansu Pro, and southern Ningxia Pro. For
counties in these regions, the spatial pattern of the ALUI of the arable
land spots is more uneven than elsewhere because of differences in
farming conditions and farming willingness among famers. Some
farmers may achieve better grain production in better farming condi-
tions or by being more industrious. Hence, local governments should
investigate these differences and relevant specific driving factors when
policies are being designed to promote local agriculture development or
arable land protection. For instance, if the difference is caused by cul-
tivation and site management technologies, local governments should
help farmers promote technological capacity or guide farmers to im-
plement other suitable agricultural practices to ensure that farmers do
not lose confidence or aggravate contradiction in unbalanced compar-
isons.

3.3. Spatial heterogeneity of ALUI-VLUI-ALA and corresponding arable
land utilization path

Using k-means clustering algorithm to perform classification, we
propose that Mainland China should be divided into six classes with

Fig. 4. Statistical histogram features of ALA and its correlations with ALUI and VLUI.
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comprehensively considering county-based normalized ALUI-VLUI-
ALA, as shown in Fig. 8. High-level policy intervention, if done prop-
erly, can be a powerful force for good. But to succeed, a tailored and
adaptive policy approach that engages with local social, environmental,
economic and cultural contexts and allows local innovation will be
crucial (Liu et al., 2018b).

For Class A, both normalized ALA and VLUI is relatively low, nor-
malized ALUI is in the average level, and ALUI local mean (∼0.55) is
close to ALUI global mean. Counties belonging to Class A are mainly
distributed in Guangxi Pro, Guangdong Pro, Fujian Pro, Jiangxi Pro,
Shandong Pro, Hebei Pro, Anhui Pro, central Liaoning Pro, and central
Sichuan Pro. There is considerable room for improvement of ALUI in
these counties.

Classes B, D, and F all possess highly normalized ALUI and relatively
low VLUI. Their ALUI local mean are 0.706, 0.889, and 0.868, re-
spectively. Counties belonging to Class F are mainly distributed in
Heilongjiang Pro and northern Jilin Pro, corresponding to higher nor-
malized ALA. This indicates that the protection of the sustainable ALUI
of arable land is particularly important in these regions. Class D pre-
sents even higher ALUI local mean in comparison with Class F.
However, its ALA local mean is significantly lower. It mainly covers
Jiangsu Pro and northern Hubei Pro while Class B mainly covers
Zhejiang Pro, Henan Pro, Hubei Pro, Chongqing Pro, Guizhou Pro,
eastern Guangxi, and southern Shaanxi. It is not that the higher ALUI
the better. For regions covered by Class D and Class F, local govern-
ments and scientists should pay more attention to the high land-use

intensity in tackling problems such as soil erosion, pesticide and che-
mical fertilizer pollution, land degradation, groundwater recession, and
therefore explore sustainable arable land use paths.

Class C represents counties that possess low ALUI and relatively
high ALA, which are mainly distributed in Hunan, Anhui, Liaoning,
Xinjiang, Sichuan, Yunnan, and Shanxi provinces. It has a higher ef-
fectiveness and efficiency in enhancing the ALUI of these counties be-
cause of their high ALA and extremely low ALUI. Furthermore, since the
VLUI of these counties are not high (VLUI local mean is ∼0.1), a single
factor is likely to be responsible for the low ALUI. Therefore, it is im-
portant to explore and improve core factors that restrict ALUI and
thereby improve arable land grain yield in these counties.

For counties belonging to Class E, the ALUI is low while VLUI is
high, thereby indicating that arable land within these counties has a
remarkably different ALUI. In this case, factors that lead to low ALUI
are more diverse and complicated, including poor soil conditions, in-
efficient farming technologies, unsuitable farming systems, inferior
agricultural facilities, low agricultural income, etc. For some counties,
there is another possibility that low and uneven ALUI indicates in-
appropriate land use type. Thus, it may be appropriate to convert some
low ALUI arable land to other land use types (e.g., grassland).
Therefore, uniform agricultural subsidy policy is probably not applic-
able in these counties. Local governments and scientists should analyze
specific reasons that lead to low ALUI status when researching possible
improvement paths and control methods of arable land productivity.

Fig. 5. Statistical histogram features of VLUI and its correlations with ALUI.

S. Ye, et al. Land Use Policy 99 (2020) 104845

8



4. Discussion

4.1. Spatial differentiation characteristics of arable land-use intensity

According to the distribution characteristics of ALUI, there is still a
significant room for yield improvement. ALUI is lower than 0.7 for
∼73.1 % counties. Therefore, it is more preferable to enhance the ALUI
of counties than to develop saline land, waste grassland, slope land, and
other kinds of unused land to supplement the total arable land.
Moreover, the spatial pattern of ALUI shows significant local spatial
autocorrelation characteristics and imbalance between East and West.

Counties with high ALUI are mainly distributed in southeastern
coastal provinces, northeast provinces, middle provinces and Qinghai-
Tibet plateau. Economically developed southeastern coastal provinces
have relatively high farming conditions, and the disadvantage of high
labour costs can be remedied by funds and technology (Hu and Huang,
2002). Peasants in northeast provinces and middle provinces generally
have relatively high farming willingness because other employment
options are scarce (Zhang et al., 2006). High ALUI in Qinghai-Tibet
plateau is mainly because large quantity of inferior arable land has been
transformed according to ecological de-farming policy (Chen, 2001).
Counties with low ALUI are mainly distributed in northern provinces,
southern Yunnan province and Hainan province (Xu et al., 2016; Liu
et al., 2014b). For these areas, farming conditions are poor because of
insufficient inputs and low management level (Yao et al., 2004); And
limited by climatic conditions, topographic features and water re-
sources carrying capacity, construction of high-standard agriculture is
difficult and costly.

4.2. Using the arable land-use intensity in future policy making

As our research shows, local government is playing an important
role in improving ALUI of arable land. The accelerated rural hollowing
driven by vast and increasing out-migration of rural labors (the number
reached 168.84 million in 2015 and has then exacerbated villagers’
insufficient care and input to the farmland (Liu, 2018a)) under urban-
rural dual-track system has imposed huge obstacles on improving land
use intensity (Li et al., 2014), which needs special attention from local
governments. Another factor that restricts the improvement of land use
intensity is severe land fragmentation caused by the household re-
sponsibility system, which can be improved by land engineering and
land consolidation (Yang et al., 2018). Continuous work by government
at all levels to reform land systems and research of land use by different
divisions should be adopted according to local conditions.

Liu et al. (2014a) has proposed a strategic land-use policy system to
construct reciprocities and multi-layer connections among main arable
land protection policies, which possesses Chinese characteristics and
consists of strategic layer, policy layer and protection layer. The ALUI
can be integrated in strategic layer to provide effective decision-making
supporting information for making and implementing different regional
arable land protection policies: regions with extensive high ALUI are
crucial area for implementation of “store grain in the ground, store
grain in technology” strategy, local governments should pay more at-
tention in tackling problems such as soil erosion, pesticide and chemical
fertilizer pollution, land degradation, groundwater recession, and
thereby promote conservation tillage technique; while for regions with
extensive low ALUI, implementing of local regional policies should
focus on arable land consolidation, management and control of arable

Fig. 6. Global and local spatial autocorrelations of ALUI.
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land abandonment, and appropriate arable land conversion.

4.3. Shortages and prospect

In the face of globalization, climate change, food security concerns
and development inequalities, the better understanding of key ques-
tions related to sustainable land use, and putting forward counter-
measures favouring sustainability are becoming crucially important to
the world (Liu, 2018a). In this paper, we have analyzed spatial dis-
tributions and autocorrelation characteristics of average ALUI of
China’s arable land at the county level and their correlations with ALA
and VLUI in Mainland China. The results can provide effective decision-
making supporting information for developing regional arable land use
patterns and policies from the perspective of utilization control.
Shortages of this study have been listed as follows.

(1) Arable land protection is a systematic project of which people’s
livelihood, public facilities, farmland and rural environmental condi-
tions must be considered. This paper does not discuss the tradeoff be-
tween regional appropriate intensity for the sustainable utilization of
arable land and food security (Justin et al., 2014) as well as the specific
reasons that impact the ALUI of counties. Hence, our future research
will focus on exploring sustainable utilization paths of arable land by
synthesizing regional climate conditions, external farming conditions,
farmers’ willingness, economic benefit, and water resource-carrying
capacity.

(2) The arable land system is a complex giant system composed of
various elements, with complex organizational structure, diverse evo-
lution direction, and regional difference (Song et al., 2018;Cheng et al.,
2018) Thus, it needs the theory and method innovation of land

computing science to realize sustainable land use. In the future, we will
research critical factors that influence ALUI and their impact me-
chanism, and thereby put forward more concrete countermeasures.
Furthermore, we will study the methods for dividing multi-level red
line of farmland protection, explore regional key tasks and analyze
changes in ALUI by integrating the achievements of “the third national
land survey.”

(3) It is difficult to determine the factors relevant to ALUI nation-
wide as manual surveys have a disadvantage of low efficiency and high
cost. In recent years, we have constructed a remote sensing (RS) data
automatic pretreatment system (RSAPTS) to support near real-time GF
RS data application (Zhao et al., 2018), including automatic radio-
metric correction, orthorectification (Ye et al., 2017), cloud detection,
geometric correction (Wang and Ye, 2015) and projection transforma-
tion (Ye and Yan, 2016a). In the future, we will develop RS technology-
based arable land production capacity indicators monitoring using
RSAPTS.

5. Conclusions

In this paper, we have analyzed spatial distributions of ALUI of
China’s arable land at the county level and their correlations with ALA
and VLUI in Mainland China, which can be used as a significant in-
dicator for evaluating the arable land use rationality and providing
effective decision-making supporting information for design of regional
arable land protection policy. According to the experimental results,
there is still significant room for yield improvement as the ALUI of
∼73.1 % counties is lower than 0.7 while the ALUI of 53.60 % counties
is lower than 0.6. Moreover, there is no significant correlation between

Fig. 7. Global and local spatial autocorrelations of VLUI.
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ALUI/VLUI and ALA. Thus, ALA is not a critical factor that affects ALUI
and VLUI. In addition, for most counties, ALUI is highly consistent.

ALUI dataset shows significant global spatial autocorrelation char-
acteristic, and high-high concentration (HHC) region mainly covers
nearly all the regions of Heilongjiang Pro, Jiangsu Pro, Hubei Pro,
Zhejiang Pro, and central-north area of Henan Pro, Guizhou Pro, etc.
Meanwhile, HHC regions have a high relationship with provincial ad-
ministrative district but are less affected by sub-SFSR. On the other
hand, low-low concentration (LLC) regions of ALUI are mainly dis-
tributed in Yunnan Pro, Hainan Pro, Shanxi Pro, Xinjiang Pro, southern
Sichuan Pro, southern Hunan Pro, northern Anhui Pro, eastern Inner
Mongolia. The relevant landscape types of these regions are mostly
mountains, hills, or plateaus, where grain yield is mainly limited by
regional hydrothermal conditions.

Counties with different ALUI-VLUI-ALA status have been divided
into six classes, using k-means clustering algorithm. This will facilitate
the understanding of appropriate arable land protection and utilization
paths for different regions and provide effective decision-making sup-
porting information for making and implementing different regional
arable land protection policies. Furthermore, ALUI is a practical in-
dicator for evaluating arable land productivity and identifying marginal
land. It can comprehensively determine external farming conditions
(including soil properties, cultivation, and site management technolo-
gies) and internal farming willingness. It also can be used as a con-
strained variable for crop yield simulation. Hence, the results of this

study can provide support information for developing spatialized arable
land protection red line.
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