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Abstract Typhoons are an environmental threat that

mainly affects coastal regions worldwide. The interactive

effects of natural and socioeconomic factors on the losses

caused by typhoon disasters need further examination. In

this study, GeoDetector was used to quantify the determi-

nant powers of natural and socioeconomic factors and their

interactive effects on the rate of house collapse in

Guangdong and Guangxi Provinces of southeast China

caused by Typhoon Mangkhut in 2018. We further identify

the dominant factors that influenced the disaster losses. The

local indicators of spatial association method was then

introduced to explain the spatial heterogeneity of the dis-

aster losses under the influence of the dominant factor. The

results indicate that both natural and socioeconomic factors

significantly affected the house collapse rate. The maxi-

mum precipitation was the dominant factor, with a q value

of 0.21, followed by slope and elevation, with q values

of 0.17 and 0.13, respectively. Population density and per

capita gross domestic product had q values of 0.15 and

0.13, respectively. Among all of the interactive effects of

the influencing factors, the interactive effect of elevation

and the ratio of brick-wood houses had the greatest influ-

ence (q = 0.63) on the house collapse rate. These results

can contribute to the formulation of more specific safety

and property protection policies.

Keywords China � Coastal regions � GeoDetector �
House collapse rate � Interactive effects � Typhoon
Mangkhut

1 Introduction

Typhoons are one of the most frequent and severe natural

hazards that occur worldwide (Peduzzi et al. 2012; Mei

et al. 2015). They not only cause losses of life and prop-

erty, but also have major socioeconomic effects on coastal

areas (Lin et al. 2015; Yan et al. 2016). China experiences

great damage from typhoons, and economic development

and the lives of over 250 million people have been severely

affected (Liu et al. 2009; Xu et al. 2013). The issue of

public safety in the context of increasing typhoon risks is

attracting increasing attention.

The eastern coastal area of China is a sensitive eco-

logical environment, and frequently experiences climatic

anomalies and catastrophic natural phenomena caused by

global warming and rising sea levels (Huang and Cheng

2013; Xu et al. 2016). Climate change and sea level rise

can cause various sudden and complex natural hazards that

further exacerbate the intensity and frequency of natural

hazards in coastal areas undergoing rapid urbanization. The

vulnerability and disaster risks of coastal cities are
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increasing (Huang and Cheng 2013). Studies have

demonstrated that the coastal areas of China—including

the Yellow River Delta, the Yangtze River Delta, and the

Pearl River Delta—are at the greatest risk of rising sea

levels and land subsidence. These areas will continue to

face extreme threats due to typhoons, storm surges, floods,

and other natural hazards in the future (Syvitski et al.

2009). With the rapid expansion of the population and

economic development, concomitant disasters will con-

tinue to increase, the original hazard factors will continue

to expand and change, new hazards and disasters will be

constantly generated, and the effects of disasters will

become more significant (Knutson et al. 2010; Li et al.

2018).

Multidisciplinary studies have been conducted on the

causes and driving factors of typhoons. Most previous

studies reported that the risk of typhoon disasters is not

only closely related to parameters such as wind speed,

changes in ocean temperature, the El Niño-Southern

Oscillation, and tropical cyclones (Elsner and Liu 2003;

Mei et al. 2015; Mei and Xie 2016), but also to the vul-

nerability of the hazard-affected elements and the capacity

of the disaster prevention and mitigation systems. With the

rapid growth of urbanization, socioeconomic activities will

affect these causes. Since the 1980s, research on typhoon

disasters has increasingly focused on safety improvement

with respect to the economy and society, and has attached

great importance to the vulnerability of human economic,

social, and cultural systems to natural hazard-induced

disasters (Vrijling et al. 1995; Nigusse and Adhanom

2019). This has since become a multiscale, comprehensive

concept influenced by nature, society, the economy, and the

environment (Cheung 2007). In recent years, the associa-

tion between disaster losses caused by typhoons and the

socioeconomic conditions has attracted great attention

from researchers in multidisciplinary fields, such as eco-

nomics, urbanization, construction, and demographics

(Vrijling et al. 1995; Nigusse and Adhanom 2019).

The disaster losses caused by typhoons are affected by

natural and socioeconomic factors. However, most previ-

ous studies mainly focused on analyzing the effect of

unilateral factors separately, such as natural or socioeco-

nomic factors, while the effects of integrated natural and

socioeconomic factors on the house collapse rate due to

typhoons, for example, have rarely been examined. Addi-

tionally, traditional statistical methods are unable to detect

the interactive effects of factors that influence disaster

losses. In reality, the interactive effects of two factors can

occur in multiple coupling forms; however, the results of

traditional regression methods are typically the product of

two factors (Pearce et al. 2011; Yang et al. 2018). Machine

learning algorithms or regression methods have been used

to calculate the coefficients with spatial differences;

however, they have poor capacity to resolve problems

when the data have spatially stratified heterogeneity (Wang

et al. 2010; Lin et al. 2014; Wang et al. 2016; Wang and Xu

2017).

The southeastern coastal areas of China are undergoing

tremendous economic growth and are home to an

increasingly important city cluster, such as Shanghai,

Shenzhen, and Guangzhou, due to rapid urbanization and

industrialization. It is also one of the main regions facing

severe natural hazards and disasters, particularly related to

typhoons. Therefore, quantifying the determinant powers

of potential factors and their interactive effects is important

for successful policy making to control and reduce casu-

alties and property damages. This study aimed to (1)

quantitatively investigate the determinants of natural and

socioeconomic factors and their interactive effects on the

house collapse rate due to 2018 Typhoon Mangkhut by

GeoDetector; and (2) reveal the spatial heterogeneity of the

house collapse rate under the effect of the dominant factor

using the local indicators of spatial association (LISA)

method. This work can facilitate the formulation of more

scientific and specific safety and property protection

policies.

2 Methods

The content of the section is organized as follows. Sec-

tion 2.1 introduces the study area. Section 2.2 introduces

the typhoon data. Section 2.3 provides the data sources of

potential driving factors. Section 2.4 describes the

methodology.

2.1 Study Area

The coastal regions of southeastern China are more eco-

nomically developed, densely populated, and frequently hit

by extreme weather-such as strong winds and heavy pre-

cipitation due to typhoons, which often cause loss of life

and property-than other regions in China (Zhang et al.

2011a). This is particularly evident in Guangdong and

Guangxi Provinces (Zhang et al. 2011b; Tian et al. 2016).

A total of 147 counties in these two provinces were most

severely affected by 2018 Typhoon Mangkhut, one of the

most destructive typhoons in the past decade (Liu et al.

2020). Thus, these two provinces were chosen as the study

area (Fig. 1). Guangdong is one of the economic centers of

China. The area of the case study provinces is

416,400 km2, with a population of approximately

165 million. In recent years, the accelerated urbanization

and industrialization in this region have exacerbated dis-

aster losses. Therefore, rapid emergency response measures

for major disasters in this region must be developed.
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2.2 Typhoon Mangkhut Data

At 17:00 on 13 September, 2018, Typhoon Mangkhut made

landfall in Taishan City of Guangdong Province, China,

with 14-level high wind intensity. After landfall, the

typhoon continued to move northwest, causing severe

damage, particularly in Guangdong and Guangxi Pro-

vinces. Due to its high intensity, it caused storm surges and

heavy rainfall that affected over 4.71 million people,

caused over 3400 houses to collapse, and damaged 11,000

houses to varying degrees. Over 341.4 thousand hectares of

crops were affected, and the direct economic losses reached

USD 2.07 billion. The typhoon hazard data were collected

from the China Meteorological Administration.1Error!

Hyperlink reference not valid. Data regarding the rate of

house collapse due to Mangkhut in Guangdong and

Guangxi were used to explore the driving factors and

analyze the spatial characteristics of the disaster, and were

collected from the Yearbook of Meteorological Disasters in

China2 and Guangdong/Guangxi governmental economic

statistical yearbooks3 (Fig. 1).

2.3 Potential Driving Factors of House Collapse

and Proxies

Based on a comprehensive consideration of the hazard, the

environment, the vulnerability of the affected communities,

the disaster prevention and reduction capacity (Shi et al.

2020), the results of previous studies (Gong and Hu 2015;

Hu et al. 2018; Nigusse and Adhanom 2019; Yuan et al.

2020), and the availability of data, the 2018 house struc-

tures for each county of the study area that is the ratio of

steel-concrete houses (RS), the ratio of brick-concrete

houses (RC), and the ratio of brick-wood houses (RB) were

taken as the explanatory variables. The variables of the

socioeconomic factors for each county included the popu-

lation density (PD), per capita GDP (PG), the ratio of urban

to rural population (UR), high school penetration rate (HS),

per capita housing area (PA), and the proportion of the

tertiary industry (PT). The natural environment and hazard

factors included the daily maximum precipitation (MP),

slope (SP), elevation (EV), and typhoon level (TY, wind

speed caused by the typhoon) (Table 1). The mean daily

MP for 2018, SP, and EV data for each county of the study

area were extracted using the regional statistical tools in

ArcGIS 10.3.

2.4 Statistical Analysis

GeoDetector was used to quantify the determinant power

of the natural and socioeconomic factors, further explain

the dominant factor, and quantify the interactive effects of

the natural and socioeconomic factors on the house col-

lapse rate due to Typhoon Mangkhut. This information can

be used to fill the knowledge gap. The LISA model was

then used to reveal the spatial heterogeneity of the house

collapse rate under the influence of the dominant factor and

classify the study area in terms of hot (High–High; high-

Fig. 1 Geographical location of Guangdong and Guangxi Provinces in China, and the rate of house collapse caused by 2018 Typhoon

Mangkhut. Source: https://data.cnki.net

1 http://2011.cma.gov.cn.
2 https://data.cnki.net/statisticalData.
3 https://data.cnki.net.
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risk areas) and cold (Low–Low; low-risk areas) spots

affected by Typhoon Mangkhut.

2.4.1 GeoDetector

The GeoDetector method can effectively consider condi-

tions with spatial heterogeneity, and it is assumed that if

the potential impact variable affects the response variable,

the response variable will exhibit a spatial distribution

similar to that of the impact variable (Wang et al. 2010;

Wang et al. 2016; Wang and Xu 2017). GeoDetector can

quantify the determinant power of a single factor as an

independent variable, and can also estimate the interactive

effects of different factors, which is more comprehensive

and informative than traditional methods in explaining

geographical phenomena. GeoDetector was used to quan-

tify the determinant powers of single or different interact-

ing factors on the response variable (house collapse rate),

and can be defined as follows:

q ¼ 1� 1

Nr2
XL

h¼1

Nhr
2
h ð1Þ

where q quantifies the determinant powers of single or

interactive factors, ranging from 0 to 1; h (h = 1, 2,…,

L) represents the spatial stratification of a single factor X,

or the crossed strata of multifactor X values; N and Nh are

the number of counties in the entire area and strata h,

respectively; and r2 and rh
2 indicate the variations in the

entire area or stratum h, respectively.

The interactive effects of factors (Xs) can also be

quantified using GeoDetector, which can further reveal

whether the interactive effects of different factors (X1\X2)
weaken or enhance the influence on the response variable;

q (X1), q (X2), and q (X1\X2) represent the q values of

X1and X2, and interactive effects of X1 and X2 (X1\X2),
respectively. The interactive effects of different factors can

be classified into five categories by comparing q (X1),

q (X2), and q (X1\X2) (Wang et al. 2010; Wang et al.

2016; Wang and Xu 2017). In Fig. 2, the top row indicates

univariate weaken; the second row indicates univariate

weaken; the third row indicates bivariate enhance; the

fourth row indicates independent; and the fifth row indi-

cates nonlinearly enhance of interactive relationship.

Moreover, significance of the q-statistic value was

Table 1 Description of the explanatory variables and data sources used for the study area

Variable Definition Unit Data sources

Hazard (A) Maximum precipitation (MP) mm Resource and Environment Data Cloud

Platform (http://www.resdc.cn); resolution:

1 km 9 1 km

Typhoon level (TY) level China Meteorological Administration (http://

2011.cma.gov.cn) and the disaster area

statistics

Environmental factors (B) Slope (SP) % Resource and Environment Data Cloud

Platform (http://www.resdc.cn); resolution:

1 km 9 1 km
Elevation (EV) m

Vulnerability of hazard-

affected bodies (C)

Ratio of steel–concrete houses (RS) % Yearbook of Meteorological Disasters in

China and Guangdong/Guangxi

governmental economic statistical

yearbook (http://data.cnki.net)

Ratio of brick-concrete houses (RC) %

Ratio of brick-wood houses (RB) %

Population density (PD) person/km2

Per capita housing area (PA) m2/person

Ratio of urban to rural population (UR) /

Capacity of disaster prevention

and reduction (D)

Per capita GDP (PG) CNY Guangdong/Guangxi governmental economic

statistical yearbook (http://data.cnki.net)High school penetration rate (HS) %

Proportion of the tertiary industry (PT) %

Fig. 2 The interactive categories of two factors and the interactive

relationship
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determined by the F test with a significance level of 0.05.

All processes implemented above were calculated using

GeoDetector.4

2.4.2 Spatial Pattern Identification

To further measure the local spatial associations and

identify the types of spatial correlation between the

response variable (house collapse rate) and the dominant

impact factors detected by the GeoDetector method (Boots

and Tiefelsdorf 2000; Huo et al. 2012), the local indicators

of spatial association (LISA) method was used as follows:

Iiml ¼ Zi
m

Xn

j¼1

WijZ
i
l ;

Zi
m ¼ xim � �xm

rm
; Zi

l ¼
x j
l � �xl
rl

ð2Þ

where xim and x j
l are observations m and l at locations i and

j, respectively, with average values of �xm and �xl, respec-
tively; rm and rl are the variances of xm and xl, respec-

tively; and Wij is a spatially adjacent matrix.

Zi
m and the corresponding spatial lag WZl

i at location

i were mapped on the vertical and horizontal axes of

Moran’s I scatter plot, respectively. The spatial correlation

was divided into four quadrants by the coordinate axis,

with the first and third quadrants indicating a positive

spatial correlation, and the second and fourth quadrants

representing a negative spatial correlation, allowing us to

observe spatial clusters—that is, hot (High–High) or cold

(Low–Low) spots. Conversely, if a negative correlation

was observed, spatial outliers were present (that is, High-

Low or Low–High areas). All of the above processes were

conducted in GeoData (Anselin et al. 2006).

3 Results

The content of the section is organized as follows. Sec-

tion 3.1 describes the results of GeoDetector. Section 3.2

introduces the spatial clusters of house collapse rate caused

by Typhoon Mangkhut.

3.1 GeoDetector Statistical Results

GeoDetector was used to quantify the determinant powers

(q-values) of single natural and socioeconomic factors and

their interactive effects on the house collapse rate due to

2018 Typhoon Mangkhut, and the results are shown in

Fig. 3. Among the selected influencing factors, MP was the

dominant factor with the greatest impact on the

heterogeneity of the house collapse rate (q = 0.21), followed

by SP (q = 0.17), PD (q = 0.15), EV (q = 0.13), and PG (q =

0.13), while TY had the lowest influence (q = 0.01). There-

fore, both natural and socioeconomic factors significantly

impacted the house collapse rate. The q values ofRC, RB and

RSwere 0.12, 0.11 and 0.08, respectively, indicating that the

house structures significantly impacted the house collapse

rate. The q values of PA and UR were 0.09 and 0.05,

respectively, indicating that the socioeconomic conditions

also significantly impacted the house collapse rate, along

with PT and HS (q = 0.08 and 0.07, respectively).

The interactive determinant powers of 78 pairs of any

two of the 13 influencing factors were determined using

GeoDetector. The determinant powers of the interactive

effects of each pair of natural and socioeconomic factors on

the house collapse rate were much greater than those of

their individual effects. Therefore, the house collapse rate

was not affected by a single factor, but was largely influ-

enced by the interactive effects of factors (Fig. 4). Among

all the interactive effects of any two factors, the maximum

is 0.63 (EV and RB), indicating that the interactive effects

of EV and RB on the house collapse rate were the stron-

gest, followed by MP and PD, and MP and EV, with

q values of 0.61 and 0.60, respectively, indicating that

strong precipitation combined with other influencing fac-

tors significantly affected the house collapse rate. These

results suggest that the interactive effects of two factors

will strengthen the impact on house collapse.

3.2 Spatial Clusters

The overall spatial autocorrelation and spatial pattern of the

house collapse rate due to Typhoon Mangkhut were

examined by conducting Moran’s I test considering the

effect of a dominant factor (maximum precipitation), and

hot/cold spots where the house collapse risk was high/low

were then identified. The global Moran’s I index of the

house collapse rate was 0.09, and the p value was 0.04,

indicating that the house collapse rate had a statistically

significant, weak spatial positive autocorrelation. The local

spatial autocorrelation variations were analyzed through

LISA verification, and hot spots (High–High areas) and

cold spots (Low–Low areas) were identified. Hot spots

represent the areas where the house collapse rate was high;

thus, they were considered as high-risk areas for house

collapse due to Typhoon Mangkhut. Cold spots represent

areas where the house collapse rate was low; thus, they

were considered as low-risk areas. Hot spots were mainly

located in southwestern Guangdong (Fig. 5), indicating

that these regions experienced severe house collapse. Cold

spots were mainly located in northeastern and southern

Guangxi, indicating that these regions experienced less

house collapse.4 GeoDetector was downloaded from http://www.geodetector.cn.
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4 Discussion

Considering the hazard, sensitivity of the environment, the

vulnerability of hazard-affected elements, and the capacity

for comprehensive disaster prevention and reduction as

possible factors (Shen et al. 2009; Di Baldassarre et al.

2010; Hu et al. 2018; Shi et al. 2020), the determinant

powers and interactive effects of the natural and socioe-

conomic factors on the house collapse rate due to Typhoon

Mangkhut were quantified using GeoDetector. The

heterogeneous spatial pattern of the house collapse rate

under the effect of a dominant factor (maximum precipi-

tation) was then examined, and hot and cold spots were

identified through the LISA model. The results show that

both natural and socioeconomic factors significantly

impacted the house collapse rate, including MP, SP, EV,

PD, and PG. Among all of the interactive effects of influ-

encing factors, the interactive effect between EV and RB

was the strongest (q = 0.63). Hot spots of the house col-

lapse rate were mainly distributed in southwestern

Guangdong, which suffered more severe precipitation

caused by Typhoon Mangkhut than the other counties of

the study area, and cold spots were mainly located in

northeastern and southern Guangxi, where precipitation

caused by Typhoon Mangkhut was less than other counties

of the study area.

Heavy precipitation caused by typhoons greatly threat-

ens the safety of people and property (Jongman et al. 2012;

Lin et al. 2015; Yan et al. 2016; Hu et al. 2018). The

determinant power of MP on the house collapse rate was

the strongest (q = 0.21), which is consistent with the

findings of previous studies. Hu et al. (2018) and Jongman

et al. (2012) reported that extreme precipitation can cause

flood disasters and affect the persistently increasing expo-

sure of population and assets. Lin et al. (2015) and Yan

et al. (2016) demonstrated that heavy precipitation and

floods caused by tropical cyclones have caused great

population and economic losses worldwide. These studies

suggest that heavy precipitation is a key indicator of

typhoon energy release and among the main disaster-

causing factors. The interactive effects of MP and other

factors, such as PD and EV, had a stronger impact on the

house collapse rate due to Typhoon Mangkhut, indicating

Fig. 3 The influences of factors

in driving house collapse. MP
daily maximum precipitation,

TY Typhoon level, SP slope, EV
elevation, RS steel–concrete

houses, RC ratio of brick-

concrete houses, RB ratio of

brick-wood houses, PD
population density, PA per

capita housing area, UR ratio of

urban to rural population, PG
per capita GDP, HS high school

penetration rate, PT proportion

of the tertiary industry

Fig. 4 The interaction effects of factors on house collapse. MP daily

maximum precipitation, TY Typhoon level, SP slope, EV elevation,

RS steel–concrete houses, RC ratio of brick-concrete houses, RB ratio

of brick-wood houses, PD population density, PA per capita housing

area, UR ratio of urban to rural population, PG per capita GDP, HS
high school penetration rate, PT proportion of the tertiary industry.

Note X1 represents the first factor, X2 denotes the second factor, and

X1 and X2 represent the interactive effects of the two factors, where

the q value of the interactive effect exceeds 0.50
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that heavy precipitation will not only have a great impact

on the house collapse rate, but greatly increases the impact

of other factors on the house collapse rate. This may be

because heavy precipitation causes secondary disasters,

such as floods and mudslides, that lead to great disasters in

coastal areas (Khouakhi et al. 2017), and threaten the safety

of people and property. Areas with developed economies

and dense populations are highly sensitive to disasters,

such as floods, rainstorms, and rising water levels. Hence,

the interactive effects of precipitation and socioeconomic

factors can strengthen the magnitude and intensity of

typhoon disasters in this region (Zhang et al. 2008; Zhang

et al. 2012; Yang et al. 2015).

Slope (SP) was another significant factor associated with

the house collapse rate, with a determinant power of 0.17,

and exerted a notable effect on the house collapse rate that

was comparable to the results of some previous studies

(Smyth and Royle 2000; Fernandez and Lutz 2010).

Nigusse and Adhanom (2019) reported that, in areas with

flat slopes and lower elevations, more people and buildings

are the most vulnerable to flooding. Smyth and Royle

(2000) demonstrated that slope has an important effect on

house damage. The interactive effects between SP and

other factors, such as RC and RS, exerted a stronger impact

on the house collapse rate due to Typhoon Mangkhut,

indicating that the combination of the slope with house

structures increases the impact on the house collapse rate.

The underlying mechanism may be the heavy torrential

precipitation and the resulting flood during typhoons, as the

water flow damages the structures or components of houses

and results in collapses.

Coastal areas with elevations of less than 5 m above sea

level are more vulnerable to sea level rises and storm

surges (Atanas and Hristo 2009). The coastal areas of

China below 5 m cover an area of approximately 143.9

thousand km2, mainly distributed along the southeast

coastal region (Huang and Cheng 2013). We observed a

strong relationship between EV and house collapse rate,

with a determinant power of 0.13, indicating that EV has a

significant impact on the house collapse rate, which is

consistent with the findings of previous studies. Huang and

Cheng (2013) reported that, when hit by a typhoon, the

collapse of a house is affected by the local elevation.

Nigusse and Adhanom (2019) demonstrated that elevation

is one of the most important parameters when typhoons hit.

Yuan et al. (2020) also demonstrated that elevation was the

most influential factor when a typhoon arrives. The inter-

active effects between EV and other factors, such as MP

and RS, were strong on the house collapse rate due to

Typhoon Mangkhut, with the determinant powers of 0.60

and 0.52, respectively, indicating that the combination of

EV with precipitation and house structures increases the

impact of typhoons on the house collapse rate. The

underlying mechanism for the effects of elevation on the

house collapse rate may be the lower susceptibility to

flooding or storm surges due to typhoons at higher eleva-

tion (Atanas and Hristo 2009; Huang and Cheng 2013).

When a typhoon arrives, areas with lower elevation will

experience a higher house collapse rate. Guangxi experi-

ences the opposite situation in areas with higher elevation,

with relatively high house collapse rates, which may be

related to the poor local economic conditions, such as a

higher brick-wood house ratio.

Fig. 5 Spatial distribution of the local indicators of spatial association (LISA) for the house collapse rate under the effect of maximum

precipitation in Guangdong and Guangxi Provinces caused by Typhoon Mangkhut in 2018
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In addition to natural factors, socioeconomic factors had

important impacts on house damage due to Typhoon

Mangkhut. For example, the determinant power of PD was

0.15, indicating that PD had a significant impact on the

house collapse rate, which was comparable to the results

reported in previous studies. Ying et al. (2011) reported

that PD has a significant impact on disaster loss due to

typhoons. Similarly, Hu et al. (2018) demonstrated that

high PD, as a vulnerability factor of hazard affected

communities, is closely related to flood disasters caused by

typhoons and increases the effect of typhoons on the safety

of people and property. Nigusse and Adhanom (2019) also

noted that PD had an important effect on the response to

flood hazards. The underlying mechanism may be rapid

urbanization, which promotes economic growth and pop-

ulation agglomeration, and various types of infrastructure

continue to be constructed to meet people’s various needs.

That is, typhoon disasters are further enhanced by

increasing population density as the roads and buildings are

more concentrated. Moreover, due to the large number of

migrant workers in the coastal areas whose education level

and knowledge regarding disaster prevention and reduction

are limited, the disaster effect will intensify (Brown et al.

2013).

The interactive effects between natural and socioeco-

nomic factors were all enhanced from the effects of single

factors, as revealed by the GeoDetector analysis. Socioe-

conomic factors have been closely related to anthropogenic

activities over the past decades, and the original ecological

environment and living conditions have undergone great

changes with the rapidly increasing global urbanization

(Gong et al. 2012). Therefore, the interactive effects

between socioeconomic and natural factors will amplify

the effects of disasters to some extent, and reinforce one

another in influencing the collapse of houses.

Hot and cold spots of the house collapse rate were

revealed by LISA. Hot spots were mainly located in

southwestern Guangdong, indicating that these regions

experienced significantly severe house collapse. Cold spots

were mainly located in the northeastern and southern

regions of Guangxi, indicating that these regions experi-

enced a significantly lower house collapse rate than other

counties of the study area. These results indicated that, in

addition to natural factors, the socioeconomic development

level also has a certain intervention effect on the outcome

of disasters, which is consistent with the results of previous

research. Zhang et al. (2017) reported that heavy precipi-

tation caused by typhoons resulted in a decrease in popu-

lation mortality with the growth of PG. Hu et al. (2018)

reported that there was a negative association between PG

and the flood deaths caused by a typhoon. The underlying

mechanism may be the great improvements in disaster

prevention infrastructure and the ability to mitigate disas-

ters with socioeconomic development.

This study has some limitations. The first is that the

typhoon disaster system is a complex subsystem of the

Earth system, which is affected by various complex natural

processes and human activities. This study only considered

some natural, demographic, and socioeconomic factors as

the influencing factors for the house collapse rate, while

several environmental factors, such as air temperature and

humidity, were omitted. The second limitation is that the

spatial scale used in this study was the county level, which

may obscure some factors through the ecological fallacy

effect and could introduce some uncertainties.

5 Conclusion

In this study, the influences of natural and socioeconomic

factors on the rate of house collapse caused by Typhoon

Mangkhut in Guangdong and Guangxi Provinces were

quantified by GeoDetector, along with their interactions.

Moreover, the spatial heterogeneity of the house collapse

rate was revealed by LISA. The results indicate that both

natural and socioeconomic factors can influence the

impacts of disasters, further demonstrating that the spatial

heterogeneity of the house collapse rate is related to the

spatial differentiation of these influencing factors and their

interactive effects. These findings can aid in the develop-

ment of specific strategies for damage prevention and

control, and the allocation of resources for different regions

to enhance their disaster response capacity and reduce

potential losses.
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