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CLUMondo‑BNU for simulating 
land system changes based 
on many‑to‑many demand–supply 
relationships with adaptive 
conversion orders
Peichao Gao 1,2, Yifan Gao 2, Xiaodan Zhang 2, Sijing Ye 1,2 & Changqing Song 1,2*

Land resources are fundamentally important to human society, and their transition from one 
macroscopic state to another is a vital driving force of environment and climate change locally and 
globally. Thus, many efforts have been devoted to the simulations of land changes. Among all spatially 
explicit simulation models, CLUMondo is the only one that simulates land changes by incorporating 
the multifunctionality of a land system and allows the establishment of many‑to‑many demand–
supply relationships. In this study, we first investigated the source code of CLUMondo, providing a 
complete, detailed mechanism of this model. We found that the featured function of CLUMondo—
balancing demands and supplies in a many‑to‑many mode—relies on a parameter called conversion 
order. The setting of this parameter is a manual process and requires expert knowledge, which is not 
feasible for users without an understanding of the whole, detailed mechanism. Therefore, the second 
contribution of this study is the development of an automatic method for adaptively determining 
conversion orders. Comparative experiments demonstrated the validity and effectiveness of the 
proposed automated method. We revised the source code of CLUMondo to incorporate the proposed 
automated method, resulting in CLUMondo‑BNU v1.0. This study facilitates the application of 
CLUMondo and helps to exploit its full potential.

The sustainable management and conservation of land resources have been central to human  society1,2, as the 
resources are limited but provide the ultimate basis for “more than 95% of human food supplies, the greater 
part of clothing, and all needs for wood, both for fuel and construction”3. A critical focus of the management 
and conservation is on land-use and land-cover change, or land change for short e.g.,4–6. The land change repre-
sents the transition of land resources from one macroscopic state to another. More importantly, this transition 
is a crucial driving force of environmental and climate change locally and globally, which in turn affects land 
 resources7,8. As a result, many efforts have been devoted to estimating future land changes in different scenarios 
and employing these estimates to inform management and conservation policies e.g.9–11.

Given the importance of future land change estimates, tools have been actively developed for their gen-
eration. These tools are called land change simulation models, classified into spatially aggregated and spatially 
explicit. Spatially aggregated models estimate future land changes in terms of quantity (i.e., composition). Such 
models usually serve as an essential component of integrated models for simulating coupled human and natural 
 systems12. A typical example is the Global Change Assessment  Model13,14, a maker model for the famous Shared 
Socioeconomic  Pathways15,16. Its land use component produces future areas of more than 60 land types (e.g., 
rainfed cornland with high fertilizer or irrigated rice land with low fertilizer) at the spatial resolution of 235 
water basins worldwide. Spatially explicit models generate the estimates of future land changes in configuration 
(if the composition information is an output of another model), or sometimes both configuration and compo-
sition. Examples of such models include cellular-automata-based models—e.g., Future Land Use Simulation 
(FLUS)  model17 and Land Use Scenario Dynamics-urban (LUSD-urban)  model18—and suitability-based models, 
e.g., Conversion of Land Use and its Effects at Small regional extent (CLUE-S)  model19 and its latest version 
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 CLUMondo20. The output format of such models is usually a raster dataset, whose spatial resolution can be as 
fine as that of input data. Therefore, spatially explicit models are more specialized in land change simulation 
and are widely used.

Among all spatially explicit models, CLUMondo is the only one that simulates land change with many-to-
many demand–supply relationships. Specifically, spatially explicit models balance a pre-defined, aggregated 
demand and the sum of corresponding, spatially explicit supply, although with different simulation strategies and 
techniques. Usually, the aggregated demand is specified as the areas of different land types e.g.21–23. In this case, 
the model adjusts the original types of land grid cells (hereafter cells), according to some mechanism, to supply 
the same areas of land types. The resultant relationship between the pre-defined demand and the corresponding 
supply is one-to-one; in other words, the demand for the area of a specific land type can only be met by supply-
ing that type (i.e., by allocating that type of cells). Sometimes, the demand also involves the amount of goods or 
services, e.g., population, food production, or ecological/economic benefits. In practical simulations, however, 
such non-area demands are transformed into the area demands for different land types to achieve one-to-one 
demand–supply balances e.g.24,25. The only exception is CLUMondo, where the balance can be achieved in terms 
of not only land type areas but also the amount of goods or services e.g.26,27. The demand for goods or services 
can be employed by this model without being transformed into areas, and each land type can be designated a 
capability to supply the goods or services in need. Because the demand–supply relationships can be modeled in 
a many-to-many mode, CLUMondo accepts diverse demand/supply settings and allows a more realistic simula-
tion of land changes. It has found increasing applications to simulate land change at local, regional, and global 
scales, as shown in Fig. 1.

In this case, the effectiveness of CLUMondo is crucial and should be improved if possible. Accordingly, this 
study was focused on its central mechanism, which is the transition potential of each basic unit in simulation 
(i.e., a cell). This transition potential is a parameter determining the future land system type of a cell. Once the 
transition potentials of all cells are calculated, a simulation result of CLUMondo can be immediately determined. 
In this study, we investigated the detailed mechanism of the transition potential. The investigation found that a 
key parameter in the mechanism is called conversion order, whose setting requires both expert knowledge and 
fine-tuning. More importantly, the values of conversion orders should vary with studies areas and land system 
characteristics, making the determination of conversion orders rather sophisticated. These facts are probably 
the reason why this key parameter should be manually set by users.

To facilitate the application of CLUMondo, we developed an automatic method for adaptively determining 
conversion orders. Evaluation results demonstrated that with this method, users could easily achieve a good 
simulation performance using CLUMondo. This method benefits not only non-expert but also expert users 
because its results can serve as a good starting point for fine-tuning conversion orders. We modified the source 
code of CLUMondo to integrate the proposed method as an option for users (who can still set conversion orders 
manually). To distinguish the modified CLUMondo from the official version, we referred to this modified one 
as CLUMondo-BNU v1.0 (where the abbreviation “BNU” stands for the university of the authors of this paper) 
and also released it for public use.

CLUMondo: simulating land system changes with many‑to‑many demand–supply 
relationships
Before explaining the mechanism of CLUMondo, we introduce two common concepts in the literature on CLU-
Mondo e.g.28–30, namely land system and land system services. In the context of CLUMondo literature, the con-
cept of land system is synonymous with but broader than that of land use/cover. A land system can be simply 
a type of land use/cover; it can also represent a mixed type of land use/cover. In the latter complex case, land 
systems are defined “in terms of their land cover composition as well as land use intensity”20. For example, the 
land systems established by Jin, Jiang, Ma and  Li27 include low/medium/high-covered natural grassland, low/

Figure 1.  Increasing number of publications retrieved from Google Scholar with the keyword “CLUMondo” by 
2 Feb 2023. When searching Google Scholar, we used double quotes to signify a phrase search and unchecked 
the “include citations” box.
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medium/high-covered grassland with few livestock, low/medium/high-covered grassland with bovines, goats & 
sheep, extensive cropland, intensive cropland, sparse forest, and dense forest. As an extension to the concept of 
the land system, the concept of land system service was developed in parallel with that of ecosystem service; it 
refers to the area of specific land use/cover contained by a land system, or more generally, the goods or services 
that a land system provides for  humans31, e.g., various terrestrial ecosystem services.

CLUMondo simulates the changes of land systems in a predefined time step, which is usually one year. Each 
time step involves a large number of iterations, where the default maximum number is 20,000. In the i-th iteration 
of the t-th time step ( i, t ≥ 1 ), CLUMondo determines whether and to what the land system type of every cell 
is changed as follows:

where c denotes the c-th cell. k and j denote the k-th and j-th land system type, respectively ( 1 ≤ k, j ≤ n ). 
T(c, t, i) is land system type of c at the end of the current iteration (i.e., the i-th iteration of the t-th time step). 
Pc,j is called the transition potential of c to the j-th land system type; in other words, Pc,j is the probability of 
the c-th cell’s land system type being converted into or maintained at the j-th land system type. This equation 
contains three “if ” conditions:

• The first condition is a spatial restriction, where � is the restricted area where land system changes are not 
allowed.

• The second condition is a temporal restriction. ξ(T(c, t, 0)) calculates how many time steps (usually years) 
c has been maintained at the initial land system type of this time step, namely T(c, t, 0) . τ(T(c, t, 0)) is a 
non-negative integer representing the minimum time steps that the land system type T(c, t, 0) should be 
maintained. This condition requires that the initial land system type of this time step should be kept for a 
predefined number of time steps.

• The third condition is a conversion restriction. Con(T(c, t, i), k) indicates whether the conversion from 
T(c, t, i) to k is allowed according to users’ settings, where one means allowed and zero means restricted.

From Eq. (1), it can be seen that Pc,j is the key component. According to the allocation procedure outlined 
by van Asselen and  Verburg7, the standard determination of Pc,j is a linear combination process involving three 
basic factors:

where P_locc,j , P_resT(c,t,0) , and P_cmpi,j are referred to as local suitability, conversion resistance, and competitive 
advantage, respectively. The functions and determinations of these three basic factors are as follows:

• The local suitability P_locc,j refers to the suitability that the j-th land system type occurs at the c-th cell. 
According to Eq. (2), only P_locc,j is a spatial parameter because it varies with location (i.e., the c-th cell). It 
is by default calculated using a logistic regression based on a series of driving factors (i.e., biophysical and/or 
socioeconomic conditions): where X1,c ,X2,c , · · · ,Xm,c are the values of different driving factors at the location 
of c-th cell, and β1,j ,β2,j , · · · ,βm,j are coefficients. β0,j is a constant. The value range of P_locc,j is (0, 1) , where 
a greater value indicates higher suitability.

• The conversion resistance P_resT(c,t,0) reflects the difficulty (e.g., cost) of converting the land system type 
T(c, t, 0) to another, or equivalently, the ease of remaining unchanged for the land system type T(c, t, 0) . Note 
that P_resT(c,t,0) changes along with t  (i.e., time step) but not i (i.e., iteration). The allowed value range for 
P_resT(c,t,0) is [0, 1] ; the greater the value, the higher the difficulty, the higher probability of keeping T(c, t, 0) , 
and the lower probability of converting T(c, t, 0) to j . In practice, the value of P_resT(c,t,0) is usually determined 
according to expert knowledge or historical land system changes. For the latter case, the determination can 
be mathematically expressed as follows:where c′ denotes the c′-th cell. h1 and h2 denote two historical years, 
and h1 < h2.

(1)T(c, t, i) =
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• The competitive advantage P_cmpi,j characterizes the capability of j , relative to other land system types, for 
filling the gap between the aggregated demand for land system services and the corresponding supply in the 
i-th iteration. According to van Vliet and  Verburg20, P_cmpi,j has the following properties:where P_cmpi,j,d 
is the P_cmpi,j specified for the d-th kind of land system service, Sj,d is the capability of the j-th land system 
type to supply the d-th kind of land system service, and di,d is the gap in the supply of the d-th kind of land 
system service.

Investigated mechanism and novel method
Detailed mechanism of the competitive advantage. In this study, we investigated the detailed 
mechanism of the competitive advantage ( P_cmpi,j ) by exploring and testing the source code for CLUMondo 
(https:// github. com/ vueg/ clumo ndo). The detailed mechanism is mathematically expressed in this study as Eqs. 
(8)–(10).

where Lj,d and LT(c,t,0),d are the so-called “conversion orders” of the land system types j and T(c, t, 0) when 
supplying the d-th land system service, respectively. The values of a conversion order can be −1, 0, 1, 2, · · · . The 
greater conversion order a land system type is assigned against a land system service, the higher priority the 
land system type will be given in allocation for filling the gap between the demand and supply of the land system 
service. In particular, the value of −1 denotes that a land system type is of no use in filling the gap. sign

(

x − y
)

 
is a sign function (also called signum function); it returns 1 if x > y , 0 if x = y , and −1 if x < y . ωd is a weight 
parameter indicating the importance of the d-th land system service. The greater value (with 1 as the default 
value) ωd has, the more important the d-th land system service is.

The parameter diff d,(t,i) in Eq. (8) can be intuitively understood as the gap between the demand and supply 
of the d-th land system service in the i-th iteration of the t-th time step. However, its calculation in CLUMondo 
is more complex than this intuition, as shown in Eqs. (9)–(10).

where Demandd,t is the demand for the d-th land system service at the beginning of the t -th time step. 
Supplyd,(t,i−1) is the supply of the d-th land system service by all land systems at the end of the (i − 1)-th iteration 
within the t-th time step. According to Eq. (9), the value of diff d,(t,i) increases if Demandd,t > Supplyd,(t,i−1) , 
whereas it decreases if Demandd,t < Supplyd,(t,i−1) . Speedi and Ri are two dynamic variables changing along with 
the iteration process to accelerate its convergence, using the following convergence conditions:

where nd is the total number of land system services. By investigating the source code of CLUMondo, we found 
that Speedi had been set with an initial value of 0.05 and an increment of 0.0002 per iteration. We also found 
that Ri is a random number ranging from 322 to 365. The incorporation of Speedi and Ri gradually reduces the 
amount of change in diff d,(t,i) along with the iteration, further making the number of cells to be changed smaller 
and smaller in each iteration. This decreasing number facilitates the convergence of the iteration when minor 
changes to land systems are needed.

Difficulty in the manual setting of conversion orders. Having understood the detailed mechanism of 
the competitive advantage, one may realize the important role of the conversion orders therein and the impor-
tance of their determination. This is probably why the determination should be performed manually and care-
fully in CLUMondo. van Asselen and  Verburg7 illustrated one such determination, with the result shown in 
Table 1. On the explanation of this table, van Asselen and  Verburg7 noted that it “indicates the relative order of 
the land systems contribution to fulfilling a specific demand type” and also “ensures logical trajectories of land 
change” (p. 3651). They recommended determining conversion orders “differently by region, depending on the 
land system characteristics in the specific regions and the likely trajectories of fulfilling increasing (or decreas-
ing) demands” (p. 3651), implying that the determination is sophisticated and requires fine tuning.
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We recognize the necessity for manually determining the conversion orders, but we note the difficulty in 
the determination by non-expert users, especially beginners. To overcome the difficulty, we will propose an 
automatic method for adaptively determining the conversion orders for different land systems. This automatic 
method will be incorporated into CLUMondo as an option for non-expert users, as well as for expert users to 
find a good starting point for fine-tuning.

A method for automatically determining conversion orders. This study presents a method for 
automatically determining the conversion orders of different land systems based on their capability for sup-
plying a specific service. The method is powerful in that it is effective in improving the simulation accuracy of 
CLUMondo, efficient in operation, and widely applicable.

Before developing the method, we rethink the functionality of the conversion order as a parameter of the 
competitive advantage. As noted in Section “Detailed mechanism of the competitive advantage”, the conversion 
order was initially not included as a parameter of the competitive advantage, which was designed to be 
proportional to Sj,d (the capability of the j-th land system type to supply the d-th kind of land system service) in 
concept. However, as shown in Section “Difficulty in the manual setting of conversion orders”, the conversion 
order was included in implementing CLUMondo, whereas Sj,d is not used in practice. The conversion order is 
employed as a proxy of Sj,d , to avoid the competition in filling the demand–supply gap of a land system service 
between two land systems with similar capabilities for supplying that service. For example, as shown in Table 1, 

Table 1.  Capability and conversion orders determined by van Asselen and  Verburg7 for 30 different land 
systems in supplying four defined land system services: crop production (tons), land-based livestock (bovines, 
goats, and sheep; number), landless livestock (pigs and poultry; number), and built-up area  (km2). ls. 
Livestock, ext. extensive, med. medium intensive, int. intensive.

Crop production 
(tons)

Land-based livestock 
(number)

Landless livestock 
(number) Built-up area  (km2)

Capability Order Capability Order Capability Order Capability Order

Cropland extensive, few livestock (ls.) 8977 4 4658 2 9620 2 0.11 1

Cropland extensive, land-based ls 11,047 4 10,250 3 31,630 2 0.12 1

Cropland extensive, landless ls 11,110 4 3317 2 81,968 3 0.11 1

Cropland med. intensive, few ls 11,695 5 3704 2 11,899 2 0.36 1

Cropland med. intensive, land-based ls 13,421 5 14,282 4 79,960 2 0.40 1

Cropland med. intensive, landless ls 16,363 5 4387 2 102,894 4 0.43 1

Cropland intensive, few ls 24,076 6 2076 2 7934 2 0.69 1

Cropland intensive, land-based ls 37,740 6 23,949 5 339,985 5 1.24 1

Cropland intensive, landless ls 31,785 6 4264 2 172,779 5 0.67 1

Mosaic cropland and grassland, land-based 
ls 13,563 4 13,843 4 132,327 4 0.52 1

Mosaic cropland and grassland, landless ls 16,080 4 4005 2 122,532 4 0.46 1

Mosaic cropland (ext.) and grassland, few ls 3871 2 4736 2 8152 2 0.09 1

Mosaic cropland (med.) and grassland, 
few ls 6504 3 4403 2 11,890 2 0.25 1

Mosaic cropland (int.) and grassland, few ls 10,984 4 3374 2 8815 2 0.47 1

Mosaic cropland and forest, landless ls 14,548 3 3815 2 112,431 4 0.33 1

Mosaic cropland (ext.) and open forest, 
few ls 6,104 2 3754 2 15,727 2 0.09 1

Mosaic cropland (med. int.) and forest, 
few ls 6752 3 3511 2 13,386 2 0.17 1

Mosaic cropland (intensive) and forest, 
few ls 9774 4 3127 2 12,680 2 0.32 1

Dense forest 1478 1 2368 − 1 28,849 − 1 0.07 1

Open forest, few ls 1459 1 2302 1 8976 1 0.09 1

Open forest, landless ls 4576 − 1 3073 − 1 89,483 3 0.13 1

Mosaic grassland and forest 3043 1 3441 1 38,943 1 0.14 1

Mosaic grassland and bare 381 1 2824 1 3294 1 0.08 1

Natural grassland 749 1 0 1 0 1 0 1

Grassland, few ls 1610 1 2720 1 18,250 1 0.13 1

Grassland, land-based ls 2059 − 1 14,159 4 37,991 − 1 0.23 1

Bare 18 − 1 4 − 1 4 − 1 0 1

Bare, few ls 430 − 1 2928 1 2948 1 0.04 1

Peri-urban and villages 22,056 − 1 9110 − 1 184,526 − 1 8.97 2

Urban 17,796 − 1 5010 − 1 193,283 − 1 37.60 3
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the “extensive cropland system with few livestock” was assigned the same conversion order (i.e., 1) as the 
“intensive cropland system with few livestock” in order not to promote the conversion from the former type to 
the latter type when filling the demand–supply gap of the “built-up area” service, although the former type has 
a lower capability in supplying the “built-up area” service than the later type (i.e., 0.11 vs. 0.69). Essentially, this 
functionality of the conversion order is achieved by transforming 

{

Sj,d
}

j
 from a series of ratio values to 

categorized, ordinal ones refer  to32 for the nominal, ordinal, interval, and ratio scales of measurement.
From this understanding of the functionality, we propose to automatically determine the conversion orders 

of different land systems using the classification of univariate data. To this end, we adopted the time-tested and 
overwhelmingly popular classification algorithm for univariate data, namely Natural  Breaks33–35. Natural Breaks 
is to find a classification of univariate data by maximizing the total difference between every two classes and 
minimizing the total difference within each class. The general algorithm of Natural Breaks is an enumeration of 
all possible classifications (Fig. 2a), from which the one with the largest goodness of variance fit [GVF, Eq. (12)] 
is selected.

where SDCM denotes the sum of squared deviations from the class means, and SDAM denotes the sum of 
squared deviations from the array mean (here, the array means all values of the univariate data). Zx,y is the y-th 
value in the x-th class, Mx is the mean of all values in the x-th class, and M is the mean of all values in all classes.

However, there is a practical problem in adopting Natural Breaks. As shown in Fig. 2a, Natural Breaks works 
with a user-specified number of classes. In the case of CLUMondo, this number should not be static and should 
be capable of varying with different applications, or more specifically, with different sets of 

{

Sj,d
}

j
 . A 

straightforward approach to address this problem is to slightly alter the algorithm to make it perform a complete 
enumeration. The so-called complete enumeration aims to select the classification scheme with the largest GVF 
by enumerating all possible classification schemes under all possible numbers of classes. But such a 
straightforward approach is infeasible for two reasons. First, this approach is inefficient as it substantially 
increases the number of possibilities. Second and more important, the largest GVF in theory (i.e., 1 when 
SDCM = 0 ) will be achieved only if the number of classes equals the total number of values, meaning that there 
is no classification at all.

In this study, we propose to solve the preceding problem by modifying the Natural Breaks algorithm. Our core 
idea is to incorporate a threshold of GVF into the algorithm to stop complete enumerations. In this way, users 
no longer need to specify the number of classes; more importantly, this number will be adaptively determined. 
Specifically, the modified algorithm iterates all possible numbers of classes, i.e., from the smallest (i.e., 2) to 
the largest one (i.e., the total number of values). Within each iteration (i.e., under each number of classes), the 
modified algorithm further enumerates all possible classification schemes. Note that different classification 
schemes have the same number of classes at this stage. Each classification scheme corresponds to a GVF. A 

(12)GVF = 1−
SDCM

SDAM
= 1−

∑

x

∑

y

(

Zx,y −Mx

)2
/
∑

x

∑
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Figure 2.  General algorithm of Natural Breaks (a) and the modified version proposed in this study (b).
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comparison will be made between the largest GVF observed and the threshold. If that GVF is greater, then the 
enumeration will be stopped, and the classification scheme corresponding to that GVF will finally be adopted. 
Otherwise, the number of classes will be increased by one to start the next iteration. The workflow of the modified 
algorithm is summarized in Fig. 2b.

In practically utilizing this modified algorithm of Natural Breaks, we set the threshold of GVF as 0.8, which 
is an empirical value e.g.36 and indicates an excellent classification. To automatically determine the conversion 
orders of different land systems in supplying the d-th service, we apply the modified algorithm to 

{

Sj,d
}

j
 and 

obtain a resultant classification scheme as follows: {�1 < �2 < · · · < �K} , where K is the number of classes, 
and �ϑ1 < �ϑ2 means that the average of the ϑ1-th class is smaller than that of the ϑ2-th class. This resultant 
classification scheme is translated into conversion orders according to the following mapping: Lj,d = κ − 1 where 
Sj,d ∈ �κ.

Experimental evaluation
Study areas and raw data. To select study areas, we consider the following three criteria. First, the study 
area should not be too small to ensure the complexity of land system changes. For example, a study area of a 
small city is not desirable accordingly because its land system changes are probably monotonous. Second, there 
should be more than one study area, to avoid the coincidence of evaluation results. Ideally, study areas should 
have distinct structures of land use, in terms of the composition of land system types and/or their spatial pat-
terns. The third criterion is a practical issue: data availability and sufficiency. The data used for experimental 
evaluation should include land system data with a fine spatial resolution for two historical years and various 
potential driving factors with the same spatial resolution as the land system data.

According to the preceding criteria, we selected two study areas, namely the Sichuan and Henan provinces 
of China. Their geographic locations are shown in Fig. 3. Sichuan has a large area of 486,000  km2, ranking fifth 
among the 34 Chinese provinces (or equivalent administrative units). The province covers the western part of a 
lowland region called the Sichuan Basin, surrounded by the Himalayas to the west, the Qinling range (i.e., the 
Qin Mountains) to the north, and the mountainous areas of Yunnan Province to the south. The topography of 
Sichuan is characterized by a considerable decrease in elevation from west to east, as shown in Fig. 3a. Dominant 
types of land use/cover of Sichuan include forests (40.4%), grasslands (30.7%), and cultivated lands (24.1%), 
and the proportion of urban areas is noticeably tiny (0.49%), according to the 2010 dataset of  GlobeLand3037.

Henan is a province in the central part of China, covering a large part of the agriculturally fertile and densely 
populated North China Plain. It is an agricultural province with food production of 65.4 million tons per year, 
ranking second out of the 34 Chinese provinces or equivalent administrative  units38. The population of Henan 
is 99.3  million39, which ranks third in China and is greater than 94% of countries (or dependent territories) 
according to the data by the United  Nations40. In comparison to Sichuan, the topography of Henan is dominated 

Figure 3.  Study areas. (a) Topography of Sichuan; (b) Topography of Henan; (c) GlobeLand30 land use/cover 
of Sichuan; and (d) GlobeLand30 land use/cover of Henan. The land use/cover data can be obtained from the 
website of the GlobeLand30 (http:// www. globa lland cover. com/). The topography data can be obtained from the 
website of the WorldClim (https:// www. world clim. org/). The figure is generated using ArcGIS 10.7 (http:// www. 
esri. com/ softw are/ arcgis/ arcgis- for- deskt op/).

http://www.globallandcover.com/
https://www.worldclim.org/
http://www.esri.com/software/arcgis/arcgis-for-desktop/
http://www.esri.com/software/arcgis/arcgis-for-desktop/
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by a flat plain with a few highlands, as shown in Fig. 3b. In addition, the structure of land use/cover in Henan 
is quite different from Sichuan. Cultivated lands, forests, and urban areas are the first three major types of land 
use/cover, occupying 64.9%, 19.4%, and 11.3% of Henan’s total area, respectively.

The experimental evaluation relies on two types of raw data: land use/cover data and potential driving factors. 
This study set two criteria for preparing the land use/cover data. First, the data of Sichuan and Henan should be 
available for at least two periods. The data for the earlier period are used as the starting point of the simulation, 
whereas that for a later period is used as the benchmark for the simulation results. Second, the data should have 
a fine spatial resolution to facilitate the generation of land systems at a coarse scale. According to the two criteria, 
we employed the GlobeLand30  datasets37, a 30-m resolution global land cover product released for 2000, 2010, 
and 2020. The thematic resolution of GlobeLand30 is ten types of land cover, i.e., cultivated land, forest, grassland, 
shrubland, wetland, water bodies, tundra, artificial surfaces, bare land, and permanent snow/ice. We extracted 
the 2010 and 2020 data for Sichuan and Henan from GlobeLand30. Note that the extracted GlobeLand30 are 
only the raw data of our 1-km resolution land system.

Potential driving factors should be prepared at the same spatial resolution of the land systems and as diverse 
as possible. Because we will produce land system data at the spatial resolution of 1 km, the expected spatial 
resolution of potential driving factors is 1 km. We collected or generated a total of 55 1-km potential driving 
factors, which can be classified into seven categories as shown in Table 2. Some of the potential driving factors 
are visualized in Fig. 4.

Establishment of multifunctional land systems. As noted in the introduction, CLUMondo features 
the capability of simulating land changes with many-to-many demand–supply relationships. Therefore, a com-
prehensive evaluation should be carried out to exploit such featured capability, where the key lies in establishing 
multifunctional land systems. The establishment involves two steps: generating a taxonomy of land systems and 
quantifying the services of different land systems.

In this study, we generated the taxonomy of land systems based on the scale transformation of the Glob-
eLand30 datasets, or more specifically, by transforming the spatial resolution of the GlobeLand30 datasets from 
30 m to 1 km. First, we upscaled the GlobeLand30 datasets from the initial spatial resolution of 30 m to a coarser 
resolution of 990 m, by aggregating every 33× 33 pixels (referred to as micro-pixels) of the raw data into new 
ones (referred to as macro-pixels). For more information on the aggregation technique, we refer the reader to 
materials on the multiscale representation of spatial  data50. Then, we specified the land system type of each 
macro-pixel as the dominated type of corresponding micro-pixels, and we further distinguished three levels 
of dominance, namely high, medium, and low-density. Accordingly, we generated as many as 30 land systems, 
such as high/medium/low-density forests, as shown in Fig. 5. In particular, thresholds for the three levels of each 
dominated type of micro-pixel were determined using Natural Breaks with a designated classification number 
of three; values of these thresholds are also shown in Fig. 5. Finally, the land systems were slightly resampled to 
the spatial resolution of 1 km to match the resolution of most potential driving factors.

The services of each land system were defined as the area of each of the ten types of GlobeLand30 land use/
cover. Under this definition, each land system would potentially become multifunctional to supply all ten services. 
Because our land systems were generated by transforming the spatial resolution of GlobeLand30, a pixel of any 
land system (a macro-pixel) corresponds to many GlobeLand30 pixels (i.e., micro-pixels) with usually diverse 
types. To quantify the capability of each land system in supplying every service (e.g., in 2010), we first performed 
an overlay analysis between the generated land systems and their corresponding raw data of land use/cover (i.e., 
the 2010 dataset of GlobeLand30). Based on the resultant overlaps, the capability can be determined using the 
following equation:

where �j denotes the total area of the j-th land system in a given study area, and �j,d is the total area of the 
micro-pixels that overlap the j-th land system and have the d-th type of GlobeLand30 land use/cover (i.e., the d
-th service). The units of Sj,d are km2/km2 . The aggregated demand for the d-th service in a year (e.g., 2020) was 
calculated as the total area of the d-th type of pixel (i.e., micro-pixels) in the GlobeLand30 dataset of that year.

Settings of other simulation parameters. In addition to establishing multifunctional land systems, 
some other parameters must be set before running CLUMondo, such as local suitability and conversion resist-
ance. Since these parameters were not the objective of our experimental evaluation, we adopted default but 
reasonable settings, or setting methods, if possible.

The location suitability was calculated using the default method, i.e., the logistic regression based on a series 
of driving factors, as shown in Eq. (3). Note that not all of our potential driving factors (as previously shown 
in Table 2) were included in the logistic regression. We removed some potential driving factors to reduce the 
correlation among them. Specifically, we first measured the correlation between each pair of potential driving 
factors using Spearman’s rank correlation coefficient (SRCC). Then, for each pair with an SRCC greater than 0.9, 
we removed from the pair the one that is more correlated with all other potential driving factors. To determine 
which is more correlated with others, we calculated the sum of SRCCs between the one potential driving factor 
and each other. Third, the first two steps were repeated until the SRCC of each pair of potential driving factors 
were less than 0.9. It is also noted that not all spatial locations within the study area were included in the logistic 
regression. We sampled the study area using an interval of one pixel; thus, only approximately 25% of locations 
were used for regression. Such a sampling strategy avoids the selection of neighboring locations, so it improves 
the independence of our samples.

(13)Sj,d = �j,d/�j
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The conversion resistance of each land system, P_resT(c,t,0) , was determined using historical land system 
changes with Eqs. (4)–(6), where h1 = 2010 and h2 = 2020 . The value of Con(T(c, t, i), k) was set by checking 
whether these are conversions from the land system type of T(c, t, i) in 2010 to the k-th land system type in2020 . 
To avoid noise, we introduced a threshold of 1% in the check. Only when the area of conversion is larger than 

Table 2.  Potential driving factors. N/A not available, “avg” average (because only average data were released).

Category No. Data Year Source

Soil

1 Bulk density 2017

41

2 Cation exchange capacity 2017

3 Clay content 2017

4 Coarse fragments volumetric 2017

5 Derived available soil water capacity 2017

6 Organic carbon density 2017

7 pH in  H2O 2017

8 Sand content 2017

9 Silt content 2017

10 Texture class 2017

Socio-economic

11 Market access index 2011
4212 Market influence index ($/person) 2011

13 Market density index 2011

14 Night-time lights 2010 DMSP-OLS Version 4

15 Total GDP (based on purchasing power 
parity) 2015 43

16 Gridded population of the world 2010 44

Accessibility

17 Time to nearest cities 2015 45

18 Distance to the nearest river N/A

Calculated in this study19 Distance to the nearest road N/A

20 Distance to the nearest railway N/A

21 Travel time one meter (motorized) 2019

46

22 Travel time one meter (walking-only) 2019

23 Time to the nearest healthcare facility 
(motorized) 2019

24 Time to the nearest healthcare facility 
(walking-only) 2019

Agriculture and vegetation

25 175 crops yield per hectare 2000 47

26 Gross primary production-March/June/
September/December 2010 48

27 Normalized Difference Vegetation Index 
(NDVI)-March 2010

https:// doi. org/ 10. 5281/ zenodo. 32562 75
28 NDVI-June/September/December 2010

Terrain

29 Elevation 2000 49

30 Variance of elevation N/A

Calculated in this study31 Slope N/A

32 Aspect N/A

Climate

33 Annual mean precipitation 2007–2018 avg
https:// doi. org/ 10. 5067/ modis/ myd13 
a2. 00634 Mean precipitation-March/June/

September/December 2007–2018 avg

35 Annual mean temperature 2000–2017 avg
https:// doi. org/ 10. 5281/ zenodo. 14359 38

36 Mean temperature-March/June/
September/December 2000–2017 avg

Livestock

37 Buffaloes 2010 https:// doi. org/ 10. 7910/ dvn/ 5u8mwi

38 Cattle 2010 https:// doi. org/ 10. 7910/ dvn/ givq75

39 Chickens 2010 https:// doi. org/ 10. 7910/ dvn/ sufasb

40 Ducks 2010 https:// doi. org/ 10. 7910/ dvn/ ichcbh

41 Goats 2010 https:// doi. org/ 10. 7910/ dvn/ ocph42

42 Horses 2010 https:// doi. org/ 10. 7910/ dvn/ 7q52mv

43 Pigs 2010 https:// doi. org/ 10. 7910/ dvn/ 33n0jg

44 Sheep 2010 https:// doi. org/ 10. 7910/ dvn/ blwpzn

https://doi.org/10.5281/zenodo.3256275
https://doi.org/10.5067/modis/myd13a2.006
https://doi.org/10.5067/modis/myd13a2.006
https://doi.org/10.5281/zenodo.1435938
https://doi.org/10.7910/dvn/5u8mwi
https://doi.org/10.7910/dvn/givq75
https://doi.org/10.7910/dvn/sufasb
https://doi.org/10.7910/dvn/ichcbh
https://doi.org/10.7910/dvn/ocph42
https://doi.org/10.7910/dvn/7q52mv
https://doi.org/10.7910/dvn/33n0jg
https://doi.org/10.7910/dvn/blwpzn
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1% of the study area, the value Con(T(c, t, i), k) was set as 1; otherwise, it was set as 0. In the experimental evalu-
ation, we do not employ spatial and temporal restrictions, which are optional in Eq. (1).

Benchmarks and evaluation metrics. We have both comparative and benchmark experiments. These 
two categories of experiments shared the same experimental settings for a study area but different determinations 
of conversion orders. In the comparative experiments, conversion orders were determined using the automatic 
method proposed in this study. By contrast, in the benchmark experiments, conversion orders were determined 
objectively according to the capabilities of different land systems to supply services and also by ensuring their 
reflection of “the relative order of the land systems contribution to fulfilling a specific demand type”7, as follows:

where Rank
(

Sj,d
)

 returns the order (starting from 1) of Sj,d in the ascending sequence of 
{

Sj,d  = 0
}

d
.

To evaluate the performance of our logistic regressions, we drew receiver operating characteristic (ROC)51 
curves to assess the fit of the logistic regression established for each land system. We employed a measure 
developed with the ROC curves to quantify each regression’s goodness of fit: Area Under the Curve (AUC, 
sometimes referred to as the ROC value)52. The theoretical value of AUC ranges from 0.5 to 1, where a higher 
value indicates a better fit. According to expert experience e.g.,22,27,53, an AUC value of 0.7 or above means good 
fit, and that of 0.9 or above demonstrates excellent fit.

We utilized two popular metrics to evaluate the performance of land change simulation: the standard Kappa 
index of agreement and the total disagreement. The former metric is also called the Kappa  statistic54 or the Kappa 
 index23. It is an improved measure compared with fraction correct (also called proportion correct or proportion 
agreement), which is biased in most cases when applied to land system maps with unevenly distributed categories 
of cells. Its calculation incorporates the expected proportion of agreement due to chance, as follows:

where P0 is the proportion of agreement calculated between the simulated and the actual land systems in 2020, 
and Pe is the expected proportion of agreement due to chance. The Kappa statistic is a positive metric: The greater 
the Kappa statistic, the better the performance of a land change simulation.

The latter metric ( D ) was proposed by Pontius Jr and  Millones55 as an alternative to the Kappa statistic, as 
follows:

(14)Lj,d =

{

−1 Sj,d = 0

Rank
(

Sj,d
)

Sj,d �= 0

(14)Kappa = (P0 − Pe)/(100%− Pe)

(15)
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Figure 4.  Some potential driving factors prepared for the study area of Sichuan. The data source can be found 
in Table 2. The figure is generated using Surfer 11 (https:// www. golde nsoft ware. com/ produ cts/ surfer).

https://www.goldensoftware.com/products/surfer
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where J is the total number of land system types, and pij is the proportion of the study area that is of i-th land 
system type in the simulation result and the j-th land system type in the reference result. The total disagreement 
is a negative metric: The smaller the total disagreement, the better the performance of a land change simulation.

Results and analysis. The evaluation results of our logistic regressions are shown in Table 3, which consists 
of the AUCs of all logistic regressions established for each land system of the two study areas. For the study area 
of Sichuan, we can see from this table that all AUCs are greater than 0.700 and averaged at 0.913. The proportion 

Figure 5.  Taxonomy of land systems for our study areas ( m denotes the threshold).
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of AUCs greater than 0.900 is 66% (18 out of 27), and that of AUCs greater than 0.800 is as high as 89% (24 out 
of 27). These results demonstrate that our incorporation of a large number of diverse, potential driving factors 
into logistic regression is valid and highly effective. These results also demonstrate the excellent fit of the vast 
majority of the established logistic regressions. We also noticed from Table 3 the following pattern: the AUC gen-
erally decreases from a high-density land system to the corresponding medium-density land system and then the 
low-density one. This pattern makes sense because the cell-level heterogeneity reduces from a high-density land 
system to the corresponding medium-density and low-density ones. The higher cell-level heterogeneity a land 
system has, the more significant relationship can be established between the land system and its driving factors.

Similar findings can be made for the study area of Henan. As shown in Table 4, more than half (61%, 14 out 
of 23) of Henan’s AUCs have a value greater than 0.950. The proportion of AUCs greater than 0.900 reached 78% 
(18 out of 23), and that of AUCs greater than 0.800 was 87% (20 out of 23). The average of all AUCs is 0.928, 
which is even greater than that of Sichuan’s AUCs. Therefore, our logistic regressions for Henan are also valid 
and highly effective.

The evaluation results of our land change simulations in the two study areas are shown in Fig. 6 and Table 5. 
It can be seen from this table that for the study area of Sichuan, the Kappa statistics of its benchmark and com-
parative experiments are 0.4287 and 0.8656, respectively. Thus, the Kappa statistic obtained in the comparative 
experiment increased by 101.91% compared to that in the benchmark experiment. This considerable increase 
demonstrates that the proposed method is highly effective. Similar conclusions can be drawn from the total 
disagreement. The total disagreement of the benchmark experiment is 0.5047, whereas that of the comparative 
experiment was reduced substantially to 0.1169 (with a reduction rate of 76.84%). For the study area of Henan, 
both the Kappa statistic and the total disagreement demonstrated the effectiveness of the proposed method. 
Specifically, the Kappa statistic was increased from 0.6475 in the benchmark experiment to 0.6823 in the com-
parative experiment, and the total disagreement was decreased from 0.2824 to 0.2535.

Overall, our evaluation results with the two study areas demonstrate not only the effectiveness of the proposed 
method for adaptively determining conversion orders but also the method’s high applicability. The method is 
especially of use if the simulation performance of CLUMondo is poor (e.g., with the study area of Sichuan).

Table 3.  Evaluation results (AUCs) of logistic regressions in the study area of Sichuan.

ID Land system type AUC 

0 Low-density cultivated land 0.856

1 Medium-density cultivated land 0.891

2 High-density cultivated land 0.964

3 Low-density forest 0.730

4 Medium-density forest 0.756

5 High-density forest 0.908

6 Low-density grassland 0.730

7 Medium-density grassland 0.802

8 High-density grassland 0.945

9 Low-density shrubland 0.907

10 Medium-density shrubland 0.924

11 High-density shrubland 0.911

12 Low-density wetland 0.964

13 Medium-density wetland 0.975

14 High-density wetland 0.999

15 Low-density water surfaces 0.889

16 Medium-density water surfaces 0.822

17 High-density water surfaces 0.864

18 Low-density artificial surfaces 0.964

19 Medium-density artificial surfaces 0.981

20 High-density artificial surfaces 0.999

21 Low-density bare land 0.918

22 Medium-density bare land 0.977

23 High-density bare land 0.994

24 Low-density permanent snow and ice 0.987

25 Medium-density permanent snow and ice 0.992

26 High-density permanent snow and ice 0.999
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Discussion
In the proposed method for adaptively determining conversion orders, we adopted an empirical value of GVF 
(= 0.8) in adopting our modified algorithm of Natural Breaks. To test the effectiveness of this empirical value, 
we performed further experiments in the two study areas. In these experiments, we first employed the general 
algorithm of Natural Breaks instead of our modified algorithm. In utilizing the general algorithm, we enumerated 
and tried every possible number of classes. This number ranged from 1 to 27 with the study area of Sichuan 
(as Sichuan has 27 land systems), and it went from 1 to 24 with the study area of Henan (as Henan has 24 land 
systems). Each possible number of classes results in a unique classification of the capabilities of different land 
systems (i.e., Lj,d ). Then, each classification was translated into a unique set of conversion orders using the same 
method of the modified algorithm, namely Lj,d = κ − 1 where Sj,d ∈ �κ . We performed independent experiments 
with each set of conversion orders (i.e., each possible number of classes).

The evaluation results of each experiment are shown in Fig. 7. For both study areas, no simulation results (and 
thus no evaluation results) were obtained when the number of classes equaled one (i.e., when all land systems 
have the same conversion orders). This fact justified the importance of conversion orders and the necessity of 
studying how to determine them. There are also some other cases where the evaluation results were not obtained. 
These cases were due to the failure of CLUMondo to produce a simulation result and thus excluded from our 
analysis. For the experiments where the evaluation results were available, we have the following two findings:

• For the study area of Sichuan, the Kappa statistic researched its highest level (i.e., greater than 86%) when 
the number of classes is small (i.e., 2–4). Then, the Kappa statistic underwent a decreasing trend with more 
classes, and a sharp decrease can be observed when the number of classes was increased from 23 to 24. When 
the number of classes equalled or exceeded 24, the Kappa statistic would become smaller than 45%. The trend 
shown by the values of total disagreement is opposite to that of the Kappa statistic in this case. We further 
calculated the correlation between these two sets of values, finding that their SRCC is as high as – 0.999.

• For the study area of Henan, the Kappa statistic and the total disagreement witnessed a general downward 
trend and a general upward trend along with the increase of the number of classes, respectively. The SRCC 
between the two metrics is – 0.992 in this case. Our proposed method corresponds to the experiment in 
which the number of classes is three. It can be seen the proposed method led to the best performance.

Based on these two findings, we concluded that the empirical value of GVF (= 0.8) is effective and an excel-
lent choice. It is effective because its resultant values of the Kappa statistic are among the highest ones for both 
study areas. In addition, it is an excellent choice as it should no longer be increased (or decreased), especially 
with the study area of Henan.

Table 4.  Evaluation results (AUCs) of logistic regressions in the study area of Henan.

ID Land system type AUC 

0 Low-density cultivated land 0.658

1 Medium-density cultivated land 0.715

2 High-density cultivated land 0.776

3 Low-density forest 0.877

4 Medium-density forest 0.903

5 High-density forest 0.982

6 Low-density grassland 0.905

7 Medium-density grassland 0.918

8 High-density grassland 0.965

9 Low-density shrubland 0.998

10 Medium-density shrubland 0.997

11 High-density shrubland 0.995

12 Low-density wetland 0.994

13 Medium-density wetland 0.937

14 High-density wetland 0.963

15 Low-density water surfaces 0.955

16 Medium-density water surfaces 0.980

17 High-density water surfaces 0.997

18 Low-density artificial surfaces 0.846

19 Medium-density artificial surfaces 0.918

20 High-density artificial surfaces 0.991

21 Low-density bare land 0.992

22 Medium-density bare land 0.989

23 High-density bare land –
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Our proposed method facilitates applications of CLUMondo with complex land systems (in terms of not only 
the number of land use/cover types but also the consideration of land use intensity). As noted in the introduc-
tion section, CLUMondo is becoming increasingly popular. But recent applications of CLUMondo still rely on 
simple land systems, which include only several land use/cover types. Let us take some recent studies as examples. 
Wang et al.56 performed a cost–benefit analysis of China’s forest landscape restoration policy with CLUMondo 
simulations involving six land use/cover types. While assessing the impact of global initiatives on land restora-
tion scenarios in India, Edrisi et al. simulated the changes of eight land use/cover types using  CLUMondo57. By 
contrast, Zhao et al. simulated the changes of only five land use/cover types using CLUMondo when assessing 
the effects of land use policies on ecosystem  services58. Our proposed method facilitates the setting of conversion 
orders even if the number of land system types is larger, e.g., more than 20 in this study, and when demand–sup-
ply relationships are many-to-many, like in this study.

Conclusions
CLUMondo is the only model that simulates land changes by incorporating the multifunctionality of a land 
system. This incorporation enables CLUMondo to support kinds of demands, both area and non-area, and to 
establish many-to-many relationships between diverse demands and different types of land systems, thus allowing 
a more realistic and useful simulation of land changes. For example, it has been used to explore not only the 

Figure 6.  Land change simulation results of Henan (a) and Sichuan (b). The data were generated in this study. 
The figure is generated using ArcGIS 10.7 (http:// www. esri. com/ softw are/ arcgis/ arcgis- for- deskt op).

Table 5.  Evaluation results of our land change simulations.

Study area Experiment Kappa Total disagreement

Sichuan
Benchmark 0.4287 0.5047

Comparative 0.8656 0.1169

Henan
Benchmark 0.6475 0.2824

Comparative 0.6823 0.2535

http://www.esri.com/software/arcgis/arcgis-for-desktop
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changes of land cover types but also land-use intensification e.g.,7,27. Therefore, it has found an increasing number 
of applications, where the simulation results serve as the basis of diverse analysis.

In this study, we first investigated the source code of CLUMondo, providing for this model’s complete, detailed 
mechanism. By doing so, we facilitate future improvement on CLUMondo and its deep coupling with other earth 
system models. More importantly, we found that the featured function of CLUMondo—balancing demands and 
supplies in a many-to-many mode—relies on a parameter called conversion order. This parameter should be 
set manually according to the characteristics of each study area and based on expert knowledge, which is not 
feasible for users without understanding the whole, detailed mechanism. Therefore, the second contribution of 
this study is the development of an automatic method for adaptively determining conversion orders. Users with 
the method no longer require expert knowledge and fine-tuning for any study area. We revised the source code 
of CLUMondo to incorporate the proposed automatic method. To demonstrate its validity and effectiveness, we 
performed comparative experiments using two representative case studies, i.e., Sichuan and Henan. To ensure 
the experiments involved the featured function of CLUMondo, we established land systems and many-to-many 
demand–supply relationships (10 demands met by the supply by more than 20–30 land systems) for simulation 
in both case studies. From these results, we made the following three conclusions:

• Our investigation into the complete, detailed mechanism of CLUMondo is successful in that it allows the 
identification of core parameters of the model and future improvements;

• Conversion order is a core parameter that affects the simulation performance of CLUMondo; the performance 
might be unacceptably poor if conversion orders are not well specified; and

• Our proposed automatic method for adaptively determining conversion orders is valid and highly effective.

We modified the source code of CLUMondo to integrate the proposed method as an option for users (who 
can still set conversion orders manually). To distinguish the modified CLUMondo from the official version, we 
referred to this modified one as CLUMondo-BNU v1.0 and also released it for public use. It is important to note 
that both the original and improved models rely on logistic regressions, and the focus of this study is not to 
improve the regression module. However, as one of the core modules of CLUMondo, regression is recommended 
to improve by future studies using advance techniques such as auto-models for spatially autocorrelated occupancy 
and abundance  data59, the geographically weighted temporally correlated logistic regression  model60, the 
Maximum Entropy Model (i.e., Maxent)61,62, artificial  intelligence63.

Code availability
The source code for the model (i.e., CLUMondo-BNU v1.0) and its manual are archived on Zenodo (https:// doi. 
org/ 10. 5281/ zenodo. 70511 99). All data used to produce the Sichuan results present in this paper are archived on 
Zenodo (https:// doi. org/ 10. 5281/ zenodo. 65947 22), and that used to produce the Henan results present in this 
paper are also archived on Zenodo (https:// doi. org/ 10. 5281/ zenodo. 65948 15).
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Figure 7.  Evaluation results with each possible number of classes: (a) the Kappa statistic and (b) the total 
disagreement.
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