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A B S T R A C T   

Accurate land-use/-cover change (LUCC) simulation is of great significance to issues closely related to regional 
planning and policy-making. Many models have been committed to conducting LUCC simulations for better 
decision-making. However, LUCC is a nonlinear spatiotemporal process with complex links and feedback as well 
as latent dependencies in both spatial and temporal neighborhoods. They are challenging to be integrally utilized 
using existing models that employ conventional statistical or machine learning methods, inevitably leading to 
inaccurate LUCC simulations. Aiming to handle this problem, this paper innovatively proposed a hybrid 
spatiotemporal convolution-based cellular automata model (ST-CA) by coupling nonlinear spatiotemporal de
pendency learning and CA-based spatial allocation. A three-dimensional convolutional neural network (3D-CNN) 
was introduced in the model to assimilate both the nonlinear driving mechanism and spatiotemporal de
pendencies. It contributes to generating more elaborate development potentials to increase simulation accuracy. 
To evaluate the model performance, an LUCC simulation was applied on a national scale in China by ST-CA. Four 
traditional CA models, namely, logistic regression (LR)-CA, random forest (RF)-CA, full-connected neural 
network (FCN)-CA, and convolutional neural network (CNN)-CA, were also developed for accuracy comparisons. 
The results demonstrate that the simulation by ST-CA reached an FoM of 18.42%, which outperformed the other 
models with accuracy increases of 11.65%, 13.11%, 7.01%, and 2.29%, respectively. The proposed model 
incorporating 3D-CNN effectively captured the nonlinear spatiotemporal properties in the LUCC process, which 
is promising for more accurate LUCC simulations.   

1. Introduction 

Land-use/cover change (LUCC) reflects the renovation and utiliza
tion of the Earth’s surface by human activities (Y. Liu et al., 2014). It is 
closely related to issues concerning sustainable development, such as 
carbon neutrality, climate change, ecological restoration, and disaster 
prevention (K. Cao et al., 2012; Houghton & Nassikas, 2017; G. Li et al., 
2017; Shafizadeh-Moghadam et al., 2019). LUCC models are effective 
tools to support the analysis of the causes and consequences of land-use 
dynamics (Verburg et al., 2004). 

Cellular automata (CA)-based models are among the most remark
able algorithms for conducting LUCC simulations due to their spatial 
explicitness and dynamic principles (X. Liu et al., 2017; Yao et al., 2017). 
However, pure CA models merely consider the immediate interactions 
between land use cells rather than the driving relationship between 

LUCC and external factors, which leads to unconvincing simulations in 
practice (Vani & Prasad, 2021). Thus, developing hybrid models inte
grating CA with other modeling methods to apply multiple concepts of 
different approaches has become a preferable strategy (Anurag et al., 
2018). Numerous studies have indicated that hybrid models incorpo
rating smarter algorithms outperform pure CA models on multiple re
gions and scales (Kourosh Niya et al., 2020; Mishra et al., 2018; Mustafa 
et al., 2017; Sankarrao et al., 2021; Vani & Prasad, 2021). Thus, hybrid 
CA models continue to receive considerable attention and remain one of 
the most appropriate techniques for LUCC simulations (Sante et al., 
2010; Vani & Prasad, 2021). 

Within the hybrid CA-based models, the generation of transition 
rules and the allocation of land cells are the two crucial parts(M. Cao 
et al., 2015; Y. Feng & Tong, 2018). Although different CA models 
provide variant spatial allocation approaches, which may lead to 
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manifold simulations of landscape dynamics, the proper calculation of 
development potentials is the key to implementing more accurate LUCC 
simulations (Xing et al., 2020). These potentials embody alternative 
future landscape dynamics related to both socioeconomic and natural 
environmental factors, which are essential driving forces for land-use 
transition (Verburg et al., 2004). 

However, precise development potentials are challenging to 
generate consummately (Shafizadeh-Moghadam et al., 2017). LUCC is a 
nonlinear process that contains complex linkages and feedbacks be
tween land use and driving forces (Schulp et al., 2008). Statistical 
models, such as logistic regression, struggle to comprehensively analyze 
the driving mechanism of LUCC due to concise structures and intuitive 
parameters (Ding et al., 2013; Gharaibeh et al., 2020), especially in large 
areas with complex human-environment relationships. To overcome this 
obstacle, some researchers have adopted machine learning (ML) 
methods, such as random forest (RF) (Liang et al., 2021), support vector 
machine (SVM) (Rienow & Goetzke, 2015; Mustafa et al., 2018), and 
artificial neural networks (ANNs) (Gharaibeh et al., 2020; Rahman & 
Esha, 2020), to better express the nonlinear mechanism. 

Moreover, LUCC is a dynamic geographical process that involves 
complex spatiotemporal dependencies (He et al., 2018; J. Liu et al., 
2014; Sidharthan & Bhat, 2012). The conversion of a target land cell is 
affected by both spatial correlation and temporal dependency. Spatial 
correlation can be regarded as the tendency that closer pixels exert more 
influence on the target cell compared with further pixels (Shafizadeh- 
Moghadam et al., 2017), which is a manifestation of Tobler’s first law of 
geography (Tobler, 1970). Temporal dependency refers to the inertia 
between time units, which means that the future land-use type is 
influenced by its past attributes (Xing et al., 2020). For example, unused 
land can hardly be converted to forest without an extended accumula
tion period irrespective of human interference. 

Previous studies have made many efforts to address spatiotemporal 
dependencies. For the spatial correlations, current practices are mostly 
confined to expressing the numerical proportion of a specific land-use 
type in neighbors, which are still insufficient to handle the complex 
spatial heterogeneity (X. Liu et al., 2018). A more consummate method 
is to extract the latent spatial features by using convolutional neural 
networks (CNNs), which helps to achieve more accurate simulations in 
CA-based models (Ma et al., 2018; Y. Zhai et al., 2020). However, 
temporal dependencies have still not received much attention and are 
inadequately expressed in LUCC modeling. Prevalent methods, 
including LR, RF, SVM, and ANN, essentially regard LUCC as a Markov 
process, which assumes that the current state of a given land cell is 
related only to its last time step but is unrelated to its extended history 
(Gounaridis et al., 2019; Grekousis, 2019). Although some ML methods 
have been introduced to utilize long-term temporal features, e.g., 
recurrent neural networks (RNNs) (C. Cao et al., 2019; He et al., 2018) 
and long short-term memory networks (LSTMs) (Xing et al., 2020), they 
focus only on extracting temporal features from land-use maps rather 
than assimilating the relationship between the sequence of driving fac
tors and the land-use situation. Furthermore, the joint utilization of 
spatiotemporal properties in the LUCC process is not convincing enough 
in these models. A key problem is that the spatial correlations and the 
temporal dependencies are separately processed in these methods, but it 
is difficult to determine which effect is dominant or whether it is cred
ible to handle it one after another. Thus, existing studies inevitably omit 
the coupling effects in the spatiotemporal LUCC process, which leaves 
room for further improvements. 

To tackle the above deficiencies, we propose a hybrid spatiotemporal 
convolution-based cellular automata model (ST-CA) coupling spatio
temporal property learning and CA-based spatial allocation. It employs a 
potential generation module using a three-dimensional convolutional 
neural network (3D-CNN) to calculate the development potentials of 
each cell and a spatial allocation module using a patch-based CA to 
simulate the future LUCC. The proposed model was expected to utilize 
the spatiotemporal neighborhood properties integrally for a more 

accurate LUCC simulation. 
To evaluate the performance of the ST-CA model, we carried out an 

LUCC simulation of China from 2010 to 2015 on a national scale. Four 
statistical or machine learning (ML)-based models, namely, logistic 
regression (LR)-CA, random forest (RF)-CA, fully connected neural 
network (FCN)-CA, and convolutional neural network (CNN)-CA, were 
simultaneously applied to the same dataset to facilitate model 
comparison. 

The remainder of this paper is organized as follows. Section 2 in
troduces the model framework, principle, parameters, and data source. 
Section 3 presents the simulation results and compares the models. 
Section 4 is the discussion where we address our strengths and weak
nesses. Finally, Section 5 ends with conclusions. 

2. Methodology 

2.1. The ST-CA model framework 

The ST-CA model is a hybrid model simulating LUCC by integrally 
utilizing both the spatial and temporal neighborhood properties of 
driving factors. The framework of the model is shown in Fig. 1. It con
sists of two main modules, namely, the potential generation module and 
the spatial allocation module. The potential generation module employs 
a 3D-CNN to calculate the development potential for every land-use type 
of each pixel. The spatial allocation module uses the potential maps to 
explicitly simulate land-use change based on the given land demands. 
The training and validation sets are required to train the model, while 
the testing set, land demands, and initial map are used for prediction. 

2.1.1. Potential generation module: Employing 3D-CNN to assimilate 
spatiotemporal properties 

The transition of a land-use cell is affected by its spatiotemporal 
neighborhoods (Milad et al., 2016). Meanwhile, the nonlinear driving 
mechanism is mingled in the spatiotemporal process, which makes it 
more difficult to comprehensively interpret (Ju et al., 2016). Here, we 
introduce the 3D-CNN to assimilate both the spatiotemporal properties 
and the nonlinear mechanism during the LUCC process. 

The 3D-CNN is a neural network algorithm first adopted for motion 
detection and prediction in digital video processing (Ji et al., 2013). It is 
able to capture both the spatial correlation and temporal dependency of 
neighborhoods (Tran et al., 2015) and to express the nonlinear driving 
mechanism of the LUCC process. It extends the convolution operation to 
the time dimension to extract mutual information between adjacent 
video frames. LUCC, representing the spatiotemporal dynamics of land- 
use patterns to a certain extent, can be regarded as a specific kind of 
motion. Thus, predicting future LUCC is analogous to dealing with a 
classification problem from a geographical point of view. Specifically, 
every pixel is endowed with spatial significance such that the central 
pixels are influenced by natural and human activities in their vicinities. 
The map of driving factors and land use at several time slices can be 
regarded as the frames that depict the evolution of geographical pro
cesses. Meanwhile, the connections between neurons help to interpret 
the nonlinear driving mechanism within the LUCC process. Hence, 3D- 
CNN is eligible to generate the development potentials of each pixel to 
become each land-use type taking both the spatiotemporal effects and 
the nonlinear relationship into account. 

Theoretically, the 3D-CNN is an extension of a 2D-CNN with an extra 
dimension, i.e., time (Tran et al., 2015). The formation of 3D convolu
tion is illustrated in Fig. 2 by comparing it with the conventional 2D 
convolution. In a 2D-CNN, convolutions are applied to the two spatial 
dimensions. The driving factors are loaded into different channels. 
Latent features can be extracted by sliding the distinct kernels 
throughout the multichannel plane (Ji et al., 2013). In the 3D-CNN, 
convolutions are simultaneously applied to both the spatial di
mensions and the temporal dimension. It convolves a 3D kernel to the 
cube formed by stacking multiple contiguous frames together, which 
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means that the feature maps in the convolution layer are connected to 
multiple contiguous frames in the previous layer. Analogous to the 2D- 
CNN, the driving factors of a time slice are loaded into different channels 
of a single frame. Kernels slide on and between the frames to create new 
space–time cubes. 

Formally, the elementary 3D convolution operation, which generates 
the value of a unit at position (x, y, z) in the j th feature map of the i th 
layer, is denoted as vxyz

ij and is given by Eq. (1), 

vxyz
ij = σ(bij +

∑

m

∑Pi − 1

p=0

∑Qi − 1

q=0

∑Ri − 1

r=0
wpqr

ijm v(x+p)(y+q)(z+r)
(i− 1)m ) (1) 

where σ(•) represents the activation function; bij is the bias item; m 
represents the set of feature maps in the (i − 1) th layer connected to the 
current feature map; Pi, Qi, and Ri are the height, width, and time slide of 
the kernel, respectively; and wpqr

ijm is the (p, q, r) th value of the kernel 
connected to the m th feature map in the previous layer. 

Fig. 1. Framework of the ST-CA model.  

Fig. 2. Illustration of (a) 2D convolution and (b) 3D convolution. Dashed lines in the same color denote shared parameters.  

J. Geng et al.                                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 110 (2022) 102789

4

In this paper, we constructed a 3D-CNN with the structure presented 
in Fig. 3. It consists of 7 layers, including an input layer, 2 convolutional 
layers, 2 max-pooling layers, a fully connected layer, and an output 
layer. The input layer was defined as a cube with 3 time slices, 8 
channels (8 driving factors), and an 11 × 11 spatial window in consid
eration of the practical significance, data accessibility, and computa
tional efficiency. Then, it was successively followed by a 3D 
convolutional layer consisting of 10 kernels of 5 × 5 × 2, a 3D max- 
pooling layer of 2 × 2 × 1, a 3D convolutional layer consisting of 20 
kernels of 3 × 3 × 2, a 3D max-pooling layer of 2 × 2 × 3, a fully 
connected layer containing 100 neurons, and a layer containing 6 neu
rons outputting the probabilities that the input cube be classified to each 
category by a SoftMax function. In addition, a dropout rate of 0.25 was 
set to the fully connected layer to prevent overfitting. 

2.1.2. Spatial allocation module: A CA package based on multiple random 
patch seeds. 

CA-based models have been extensively employed in LUCC simula
tions (S. Li et al., 2017; X. Liu et al., 2017). They discretely allocate land 
pixels at the grid cell level in terms of time and space and hence are 
adept at representing the spatiotemporal processes of LUCC (Xing et al., 
2020). The CA based on multiple random patch seeds for space alloca
tion (CARS), first developed in the patch-generating land-use simulation 
(PLUS) model (Liang et al., 2021), was employed in this study as the 
spatial allocation module. It integrates both ‘top-down’ and ‘bottom-up’ 
processes and is reputed to generate more realistic spatial structures by 
its flexible patch-based strategies for multiple land-use types at a fine- 
scale resolution. This CA module, which is based on multiple random 
patch seeds and roulette selection, was found to be remarkable for 
accurately simulating the LUCC on multiple scales (C. Li et al., 2021; 
Liang et al., 2021; M. Shi et al., 2021; H. Zhai et al., 2021). 

The inputs of the CARS mainly include the initial land-use pattern, 
development potential, and land demand. Generally, the initial map 
refers to the actual land use of the start year, and the land demands 
specify the amount of each land-use type in the target year. In the 
simulation process, the land demands are explicitly allocated to the 
entire region according to the initial map and development potentials. A 
local land-use competition mechanism through a self-adaptive coeffi
cient drives the amount of land use to reach future demands. It has been 
proven to be able to accurately simulate LUCC on multiple scales. Thus, 
the CARS was connected with the potential generation module to 
formulate the hybrid ST-CA model to simulate future LUCC. 

2.2. Other hybrid models developed for comparison 

To illustrate the advancement of ST-CA, other hybrid models (i.e., 
LR-CA, RF-CA, FCN-CA, and CNN-CA) were developed for accuracy 
comparison. Among the existing methods, LR, RF, FCN, and CNN, which 
partially consider the spatiotemporal dependency or nonlinear effects, 
are prevalent methods to establish the driving mechanism of LUCC. In 
this study, LR-CA, RF-CA, FCN-CA, and CNN-CA were constructed to 
form the same structure as ST-CA for comparison. They all shared the 
same spatial allocation module, but the potential generation modules 
were replaced by the methods mentioned above. 

As a conventional statistical method, LR is based on the log-linear 

expression given by Eq. (2). 

log
(

Pk
i

1 − Pk
i

)

= βk
0 +

∑N

n=1
βk

nXn,i (2) 

where Pk
i represents the development potential of cell i to become 

land-use type k, Xn,i is the n th driving factor of cell i, and βk
n is its 

coefficient. 
The RF employed in this paper consists of 10 decision trees with the 

max features set to 5 to avoid overfitting. The voting of trees generated 
the potentials. 

As an ANN method, the FCN consisted of 2 I/O layers and 2 hidden 
layers of 100 neurons each. The dropouts of the hidden layers were set to 
0.25 to avoid overfitting. 

The CNN (Fig. 4) consisted of 2 convolutional layers, 2 pooling 
layers, and 2 fully connected layers, which is designed similarly to the 
3D-CNN for ease of comparison. 

2.3. Model applications and comparisons 

To examine the effectiveness of the ST-CA model in complex natural 
and social environments, we carry out an LUCC simulation of China on a 
national scale from 2010 to 2015. The flow chart for model application 
and comparison is illustrated in Fig. 5. Primarily, the land use in 2010 
and the driving factors in 2000, 2005, and 2010 were sampled to the 
proper formation to train the ST-CA. Then, the land demand in 2015 and 
the factors in 2005, 2010, and 2015 were used to drive the model. 
Additionally, these data were also fed into the comparison models to 
obtain other simulations. Finally, accuracy assessments were carried out 
to compare the model performance. The data sources and model oper
ations are introduced in detail in the following paragraphs. 

2.3.1. Data sources and preprocessing 
The data used in this study, which consisted of land use, environ

mental data, and socioeconomic data, are listed in Table 1. Land-use 
maps of China in 2010 and 2015 with a spatial resolution of 1 km 
were collected from the Resource and Environment Science and Data 
Center, and these maps consisted of 6 primary land-use types, namely, 
arable land, forest, grassland, water, construction land, and unused land. 
Both environmental and socioeconomic factors influence LUCC. In this 
paper, 8 factors were selected to drive land-use change in the study 
period. The environmental data include elevation, annual precipitation, 
and average annual temperature, while the socioeconomic data include 
the gross domestic product (GDP), population density, highways, and 
railways. Elevation, slope, distance to highways and railways were 
deemed constant during the study period subject to the availability of 
the data sources. Finally, all the data were normalized and resampled to 
1 km grids. 

2.3.2. Sampling for training and validation 
Samples were generated before training the 3D-CNN in the potential 

generation module. To address the spatial-decay effect, we used an 11 ×
11 sized spatial window (i.e., the central pixel is affected by its 10 km 
radius neighborhood with a 1 km resolution) considering the trade-off 
between detail abundance and computational efficiency. 

Fig. 3. The structure of the 3D-CNN in the potential generation module.  
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Factor arrays were sampled to cubes in the shape of 3 × 8 × 11 × 11. 
For the training process, the driving factors in 2000, 2005, and 2010 
were concatenated to an 8-channel array with 3 time slices. The land-use 
types of the central pixels of the spatial windows in 2010 were selected 
as training tags. A uniform sampling strategy at intervals of 6 pixels was 
adopted to obtain an adequate dataset. Finally, a total of 246,108 
samples were collected after dropping the no-data samples. The train- 
test split coefficient was set to 0.2, which means that 80% of the sam
ples were randomly selected as the training set, while the remaining 

20% were used for validation. The training set was used to optimize the 
network weights of the potential generation module using the back
propagation (BP) method, and the validation set was used to examine 
the network performance after each training epoch. 

2.3.3. Simulating the future LUCC 
Two main steps are required to accomplish an LUCC simulation using 

the ST-CA model, namely, generating the development potentials and 
conducting the spatial allocation. 

For potential generation, the 3D-CNN was first trained to converge 
using the training and validation sets with an initial learning rate of 
0.001. Then, the trained network was used to predict the development 
potentials for the target year. The input cubes for prediction were cut to 
the same size as the training samples from the neighborhood of every 
location of the 8 driving factors in 2005, 2010, and 2015, which is 
regarded as the testing set of this study. 

For the spatial allocation, the initial land-use pattern, development 
potential, land demand, and other adjustable parameters are set before 
running the allocation module. The initial land-use pattern was set based 
on the actual land-use map in 2010. The demand of each land-use type 
was set to the actual area in 2015. The spatial allocation procedures 
were conducted from 2010 to 2015 using the development potentials 
generated by the 3D-CNN. Parameter tuning was conducted during 
simulation to obtain the best accuracy. 

2.3.4. Indicators for accuracy evaluation 
An accuracy evaluation was conducted to quantify the performance 

of the model. For a comprehensive assessment, two indicators were 
calculated for each of the five hybrid models by comparing the LUCC 
simulations with the observed maps. From the perspective of conversion 
accuracy, the figure of merit (FoM) is widely used in LUCC accuracy 
evaluation and is calculated by Eq. (3): 

Fig. 4. The structure of the 2D-CNN.  

Fig. 5. The flow chart for model application and comparison.  

Table 1 
Data used in this study.  

Data Variable Description Resource 

Land-use/cover 
map 

y 1 km raster, 6 primary types, 
year of 2010, 2015 

https://www. 
resdc.cn 

Elevation X1 1 km raster, mapping by SRTM 
in 2000 

https://www. 
resdc.cn 

Slope X2 1 km raster, calculated in 
ArcGIS with elevation 

– 

Temperature X3 1 km raster, year of 2000, 
2005, 2010, 2015 

https://www. 
resdc.cn 

Precipitation X4 1 km raster, year of 2000, 
2005, 2010, 2015 

https://www. 
resdc.cn 

GDP X5 1 km raster, year of 2000, 
2005, 2010, 2015 

https://www. 
resdc.cn 

Population X6 1 km raster, year of 2000, 
2005, 2010, 2015 

https://www. 
resdc.cn 

Distance to 
Highways 

X7 1 km raster generated in 
ArcGIS from vectors mapped 
in 2010 

https://www. 
webmap.cn 

Distance to 
Railways 

X8 1 km raster generated in 
ArcGIS from vectors mapped 
in 2010 

https://www. 
webmap.cn  
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FoM =
H1

H1 + H2 + M + F
× 100% (3) 

where H1 represents true hits, which are the correct simulated area; 
H2 denotes the partial hits, which is the area of inaccurate prediction 
due to observed change predicted as the wrong gaining category; M 
indicates misses, corresponding to areas that actually changed but are 
simulated as unchanged; and finally, F denotes the false alarms, corre
sponding to areas that have not changed but are simulated as changed. 
The FoM ranges from 0% to 100%, and a higher value represents a better 
prediction of land-use changes. 

Furthermore, from the perspective of overall similarity, confusion 
matrices are employed to quantitively evaluate the consistency between 
the predicted map and the observed map. The commission error (CE) 
and the omission error (OE) are calculated to assess underestimations 
and overestimations, respectively. The CE is the proportion of pixels that 
are predicted as one category but actually belong to other categories, 
and OE the is the proportion of pixels in one category but are wrongly 
predicted as other categories. The kappa coefficient is calculated using 
formula (4): 

Kappa =
po − pe

1 − pe
(4)  

po =

∑m
i=1ci

n  

pe =

∑m
i=1ai × bi

n × n 

where i represents the land-use type, c is the number of identical 
pixels between observation and prediction, ai is the number of pixels of 
type i in the observed map, bi is the number of pixels of type i in the 
simulated map, and n is the total number of pixels. The kappa coefficient 
ranges from − 1 to 1, and a higher value represents a higher overall 
similarity. 

3. Result 

3.1. Generated development potential maps 

The development potential of each land-use type generated by the 
potential generation module in the ST-CA model is shown in Fig. 6, by 
which the spatial distributions of land use in China were faithfully 
depicted. For arable land, the regions with high potentials are mainly 
located in the Songnen Plain, Sanjiang Plain, North China, and Sichuan 
Basin. For the forest, the high-potential areas locate in the northeast, 
southwest, and southeast, which are consistent with the three major 
Chinese forest regions. For grassland, Xilin Gol and Hulunbuir of Inner 
Mongolia and the Tibetan Plateau are the most suitable regions for 
development. Water is mainly distributed in southern China and the 
Tibetan Plateau. Construction land is consistent with developed urban 
areas. Unused land is mainly distributed in the deserts of the northwest 
as well as the mountains and valleys of the Tibetan Plateau. 

The potential maps generated in the ST-CA are preferable to those 
generated by other models. As shown in Appendix A1., the LR method 
generated more evenly distributed potentials because of its linear 
properties. The RF functions by the voting of multiple decision trees 
(Breiman, 2001). This resulted in generating discrete probabilities that 
were not exact enough for accurate LUCC simulations. The FCN and 
CNN generated smooth potential maps that capture the nonlinear 
driving mechanism in LUCC, but they were not as precise as those 
calculated by 3D-CNN. In general, the 3D-CNN has the advantage of 
assimilating both the nonlinear driving mechanism and spatiotemporal 
dependencies, which yields a more accurate LUCC simulation. 

3.2. Land-use/land-cover simulation and comparison 

3.2.1. Spatial pattern of simulations 
The simulation results of the ST-CA model and the other comparison 

models are shown in Fig. 7. A densely populated urban area in the east 
and a grassland-unused land ecotone in the northwest were selected to 
compare the details. 

Fig. 6. Potential maps generated by 3D-CNN in the ST-CA model.  
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Fig. 7. Comparison between actual land use and simulated results. (a) Actual land-use map of 2015, (b)–(f) simulation results of the ST-CA model and other 
comparison models. 
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The overall land-use patterns simulated by the five models are 
generally in accordance with the actual conditions, which proves the 
simulation capability of the models. As shown in Fig. 7, the patches 
simulated by LR and FCN tend to be clumpier, which means that the 
separated cells merge into integral ones. This trend can be clearly seen in 
eastern China, where gross overestimation occurred for construction 
land. The land use simulated by RF exhibits a fragmented pattern 
resulting from discrete potentials. This leads to an underestimation of 
the LUCC, where the simulated change is less than the actual change. In 
contrast, CNN-CA and ST-CA significantly mitigated these biases and 
were able to reveal more details. 

3.2.2. Accuracy comparisons. 
An accuracy comparison was conducted to quantitatively illustrate 

the model performances. The simulation accuracies in 7 subregions of 
China, namely, Central China (CC), Eastern China (EC), Northern China 
(NC), Northeastern China (NE), Northwestern China (NW), Southern 
China (SC), and Southwestern China (SW), were calculated to compare 
the model performance in the regions with different endowments. Two 
indicators, namely, the FoM and the kappa, are shown in Table 2. In 
general, the simulation accuracy in sequence from high to low is ST-CA, 
CNN-CA, FCN-CA, LR-CA, and RF-CA. 

The ST-CA obtains the greatest FoM and kappa in both the subregions 
and the whole country. Its overall FoM and kappa reached 18.42% and 
0.991, respectively. Thus, the FoM of the ST-CA was 11.65% and 13.11% 
better than those of the LR-CA and RF-CA and 7.01% and 2.29% better 
than those of the two ANN-based models. Meanwhile, the ST-CA model 
also achieved the best accuracy in each subregion, yielding an FoM that 
was higher by 1%–16% and a kappa that was higher by 0–0.011. This 
demonstrates that the proposed ST-CA can effectively utilize spatiotem
poral neighborhood properties and address complex heterogeneities on a 
national scale. Regionally, the FoM of ST-CA was highest in CC (21.70%) 
and lower in SW (16.49%). In addition, compared with the CNN-CA 
model, the ST-CA model improved the FoM of EC by the largest margin 
(4.03%), indicating that the model is more effective in using the temporal 
characteristics of land-use change in northeastern China. 

In addition, the CE, OE, and total errors of each model for different 
land-use types were calculated based on the confusion matrices. As 
shown in Table 3, the ST-CA obtained the least total error of 0.71% 
among the five models, which is 0.07%-0.17% less than those of the rest. 
This illustrates that the ST-CA outperformed the other models in terms of 
predicting the overall patterns of LUCC. For the CE and OE, there is no 
significant distinction between models because of the relatively sparse 
changing pixels compared with the extensive study region. Despite this, 
the proposed ST-CA still obtained the lowest CE for forest (0.16%), water 
(1.48%), and construction land (7.25%) and the lowest OE for forest 
(0.23%), water (0.81%), construction land (6.40%), and unused land 
(0.43%), which accounted for more than half of all land-use types. 

Furthermore, it can be seen that the construction land is challenging 
to be accurately predicted, but ST-CA reduces the most errors on none 
other land-use types than construction land. It achieves a 0.18%-2.45% 
decrement on CE and a 0.23%-3.29% decrement on OE. Based on the 
above evaluation, the ST-CA is the best predictor among the five models, 

which shows great potential for further application. In addition, detailed 
information about the confusion matrices is available in Appendix A2. 

3.2.3. Error distribution 
The spatial distributions of the incorrectly predicted pixels and 

accurately predicted pixels are mapped in Fig. 8. The whole country was 
divided into 100 km side-length grids, and the factors of the FoM, 
namely, false alarms (FA), misses (MS), partial hits (PH), and true hits 
(TH), were plotted. The predictions in the east are more accurate than 
those in the west. Spatially, FA are mostly distributed in the Kunlun 
Mountains in southern Qinghai and urban areas in the North China 
Plain, and MS are mostly distributed in the northeast, northwest, and 
southwest. These areas are either alpine regions and deserts with poor 
climate conditions or rapidly urbanizing regions with complex human- 
land relationships, where it is more difficult to implement accurate 
LUCC simulations (Ren et al., 2019). Based on Hu’s line as the boundary, 
the TH are higher in the east, which indicates that it is easier to conduct 
accurate LUCC simulations in developed regions with dense pop
ulations, prosperous economies, and infrastructure, where the inde
pendent variable contains a larger amount of information. 

The quantitative distributions of FA, MS, PH, and TH of each model are 
demonstrated in Fig. 9. The five groups of cumulative histograms represent 
the error proportions of LR-CA, RF-CA, FCN-CA, CNN-CA, and ST-CA. In each 
group, the darker-colored bar on the top represents all of China, and the 7 
lighter-colored bars from top to bottom represent CC, EC, NC, NE, NW, SC, 
and SW. Evidently, the proportions of TH increase when the model becomes 
more complicated. However, the FA and MS become variational. Compared 
with LR-CA and RF-CA, FCN-CA raises the value of FoM by decreasing the MS 
while FA remain approximately the same. For CNN-CA, even though the 
proportions of FA are larger than those of the other models, the significant 
reductions in MS improve the FoM. For the best-performing ST-CA, the 
amounts of FA and MS simultaneously decrease, resulting in the highest 
accuracy among the five models. Considering that the five models employ 
the same CA module, the ST-CA produces the most accurate details in the 
maps of development potential, which reduces both the overestimation and 
underestimation of LUCC at the same time. 

4. Discussion 

4.1. Advantages of the ST-CA model 

The results demonstrated that the proposed ST-CA model achieved 
the best accuracy in the LUCC simulation of China among the analyzed 
models. Theoretically, the improvement can be attributed to the ability 
of the 3D-CNN in the potential generation module to capture the 
spatiotemporal neighborhood effects and the nonlinear relationships in 
the LUCC process. 

Neighborhood effects are crucial factors for the calculation of 
development potentials (He et al., 2018). In our proposed ST-CA model, 
the spatial and temporal neighborhood effects were simultaneously 
handled through spatiotemporal convolutions on time-series driving 
factors. The 3D kernels slide over the data cubes to extract the spatio
temporal features regardless of the priority. Meanwhile, the convolution 

Table 2 
The FoM and kappa of the simulations.   

LR-CA RF-CA FCN-CA CNN–-CA ST-CA  
FoM (%) Kappa FoM (%) Kappa FoM (%) Kappa FoM (%) Kappa FoM (%) Kappa 

CC  6.92  0.978  5.63  0.980  13.09  0.983  18.36  0.984  21.70  0.985 
EC  7.58  0.981  5.37  0.979  13.52  0.983  18.45  0.984  20.36  0.990 
NC  6.72  0.988  5.82  0.989  10.65  0.987  16.16  0.989  18.26  0.989 
NE  6.64  0.987  4.23  0.980  12.55  0.988  16.83  0.990  20.86  0.994 
NW  7.47  0.985  6.10  0.984  10.75  0.987  15.37  0.980  17.19  0.987 
SC  6.82  0.980  5.01  0.979  12.74  0.979  16.56  0.983  17.98  0.983 
SW  3.39  0.994  3.03  0.994  9.44  0.994  14.83  0.994  16.49  0.995 
Overall  6.77  0.989  5.31  0.989  11.41  0.990  16.13  0.989  18.42  0.991  
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layer is adept at extracting local features, which is appropriate for 
assimilating the spatiotemporal heterogeneity of driving mechanisms 
from a geographical perspective. The pooling layer ensures the trans
lation and rotation invariance of features (J. Feng et al., 2018; Leonov 
et al., 2019). In addition, the stacking of the convolution layers is able to 
deal with the scale effect because the later layer conducts the convolu
tion on multiple neurons of the previous layer. This is analogous to an 
upscaling procedure that obtains the driving mechanism from smaller 
scales to larger scales. Thus, the potential generation module is able to 
understand the complex spatiotemporal process by learning the latent 
features beyond the grasp of human cognition (J. Feng et al., 2018). 

The nonlinear mechanism between land use and driving factors 

should also be deliberated in LUCC predictions, especially in rapidly 
developing regions with complex human-land relationships (G. Shi 
et al., 2018; Yang et al., 2008). Among the developed models in this 
study, the LR-CA employed a generalized linear model to generate the 
potentials, ultimately resulting in an inferior simulation accuracy 
compared to those of the other nonlinear models. Although the RF-CA 
captures the nonlinear relationship by the voting of several decision 
trees, it is suspected of oversimplifying the rules of LUCC on an extended 
scale, thus obtaining a limited simulation accuracy. In the ST-CA model, 
however, the fully connected layer in the 3D-CNN inherently captures 
the nonlinear relationships. The abundant neurons connected to the 
convolution outcomes are capable of interpreting complex nonlinear 

Table 3 
The error (%) of the simulations.   

Arable Forest Grass Water Construction Unused 
Total  

CE OE CE OE CE OE CE OE CE OE CE OE 

LR-CA  1.24  1.08  0.29  0.30  0.50  0.52  3.13  0.91  9.43  9.35  0.31  0.73  0.83 
RF-CA  1.39  1.39  0.30  0.29  0.44  0.44  1.87  1.86  9.70  9.69  0.60  0.61  0.88 
FCN-CA  1.19  1.17  0.24  0.27  0.51  0.51  1.70  1.65  8.44  7.31  0.44  0.56  0.78 
CNN-CA  1.02  0.99  0.23  0.25  0.70  0.76  3.99  3.98  7.43  6.63  0.48  0.47  0.85 
ST-CA  1.16  1.25  0.16  0.23  0.47  0.52  1.48  0.81  7.25  6.40  0.48  0.43  0.71  

Fig. 8. The spatial distribution of the proportion of pixels that were incorrectly predicted (a), (b), (c) and accurately predicted (d).  
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relationships (Agatonovic-Kustrin & Beresford, 2000), which enables 
the model to precisely calculate the development potentials of each 
pixel. In addition, the sufficient samples provided by the large study area 
also ensure the feasibility of training the network with many parame
ters. All the strengths above significantly contribute to the LUCC simu
lation, which is verified by the accuracy comparisons among LR-CA, RF- 
CA, FCN-CA, CNN-CA, and ST-CA. 

4.2. Comparison with existing research 

Related studies are introduced to further assess our proposed ST-CA 
model. The details of each model are collected in Table 4. All these 
models follow the same structure as ST-CA; in other words, an ML 
method is applied to calculate the development potentials, and a CA 
module is applied to conduct spatial allocations. They differ in study 
areas, resolutions, time spans, and model accuracies. Before comparison, 
two consensuses should be noted: (1) the FoM value of a long-period 
simulation is most likely higher than that of a shorter-period simula
tion (Estoque & Murayama, 2012; Pontius et al., 2008), and (2) the 
LUCC in large regions with complex climatic conditions and regional 
differences is more difficult to accurately predict (X. Liu et al., 2017). 

Although the FoM of ST-CA is seemingly not as high as those of the 
other models, our model is still competent when considering its larger 
spatial scale, shorter time span, better robustness, and wider applications. 

PLUS is the model most similar to ST-CA due to the shared CARS module. 
Although PLUS reached a better FoM of 22.75% in the city-scale simula
tion of Wuhan (Liang et al., 2021), the employed RF struggles to properly 
calculate the development potentials for the entire region of China, which 
has been verified by our comparison experiments. 

The FLUS model was applied to the LUCC simulation of China (X. Liu 
et al., 2017). It achieved an approximately equal FoM to our model even 
though it employed an FCN that neglected the neighborhood effects. 
However, the study was conducted based on partitioning of the country. 
This means that the researchers built disparate models for different re
gions, which is equivalent to conducting simulations in smaller areas. 
Additionally, it is intractable for researchers to properly divide a study 
area into subregions without sufficient prior knowledge (Xia et al., 
2019). Our proposed ST-CA model directly simulates the LUCC of China 
without partitioning and ultimately achieves an approximately equal 
accuracy. Thus, it obtained better robustness by avoiding the adverse 
impact of unfaithful compartmentalization and poor data accessibility. 

For the model proposed by Zhai, although it employed a CNN to 
extract neighborhood effects and obtained a satisfying accuracy on the 
city scale, it can be applied only to binary-state LUCC simulations (e.g., 
urban vs. nonurban) (Y. Zhai et al., 2020). In contrast, the multiclass 
simulation conducted by the ST-CA has wider applications to support 
decision-making. 

For the model proposed by Xing, although it employed both the CNN 
and LSTM to utilize spatiotemporal dependencies (Xing et al., 2020), the 
smaller study area and the longer time span endowed the model with 
simplicity to capture the changing pixels. In comparison, our proposed ST- 
CA model worked well in the spatiotemporal LUCC simulations on a large 
scale, which involved more complex mechanisms and heterogeneities. 

4.3. Limitations and future work 

Although the proposed ST-CA model has been proven to achieve su
perior performance in the LUCC simulation of China on a national scale, 
there are still some limitations that need to be addressed in future works. 

(1) Interpretation of mechanism. ANNs have been widely applied in 
all areas of research due to their advantages in the accurate simulations 
of complex processes (Aburas et al., 2019). Once trained, it is usually 
considered a black box that receives inputs and provides answers. 
Although the parameters and links in the network indeed reflect the 
latent relationship between I/O ports, they are hardly comprehended by 

Fig. 9. The proportions of false alarms, misses, partial hits, and true hits.  

Table 4 
Model comparison with related studies.  

Model FoM 
(%) 

Study area Resolution Time span Reference 

ST-CA*  18.42 Mainland 
China 

1000 m 2010–2015  

PLUS (RF 
+

CARS)  

22.75 Wuhan, 
China 

30 m 2003–2013 (Liang et al., 
2021) 

FLUS 
(FCN +
CA)  

19.62 Mainland 
China 

1000 m 2000–2010 (X. Liu et al., 
2017) 

CNN +
VCA  

36.10 Shenzhen, 
China 

30 m 2009–2012 (Y. Zhai 
et al., 2020) 

CNN +
LSTM 
+ CA  

40.75 Dongguan, 
China 

80 m 2000–2014 (Xing et al., 
2020)  
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humans. Thus, to explicitly interpret the driving mechanism of land 
conversions, the coupling of a statistical model and a mechanism model 
is required to better support decision-making. 

(2) Adaptive neighborhood. The proposed ST-CA model employs a 
fixed spatiotemporal window to assimilate the latent features in the whole 
study area. In fact, however, the precise influential area of neighborhoods 
is heterogeneous due to the natural and social endowments in different 
regions (Liao et al., 2016). Thus, an adaptive neighborhood that can 
automatically identify the proper size of convolution kernels in different 
regions will be effective to further improve the model accuracy. 

(3) Computing expense. The ST-CA model requires more computing 
resources than traditional models. For instance, it takes 1–2 h to 
generate the development potentials of China, and the samples also 
occupy a larger amount of memory. However, this is acceptable in 
consideration of its higher accuracy along with the booming improve
ments of computing devices (Lan et al., 2017). 

5. Conclusion 

LUCC is a nonlinear process containing complex spatiotemporal 
dependencies that are still challenging to model by existing methods. In 
this paper, we propose a novel hybrid ST-CA model coupling spatio
temporal property learning and CA-based spatial allocation. A LUCC 
simulation of China from 2010 to 2015 on a national scale is conducted 
to test the model performance. The main contributions of this paper can 
be summarized as follows. (1) Compared to other hybrid LUCC simu
lation models, the proposed ST-CA model coupling 3D-CNN with CA 
increased the accuracy of LUCC simulation. (2) Capturing the nonlinear 

spatiotemporal properties in the simulation process is an effective way 
to improve LUCC model performance. 

Our study is expected to provide a useful tool for policymakers to 
manage land resources. In future work, we will address the limitations 
by interpreting the mechanism of land conversion, exploring the adap
tive neighborhood, and improving the computational efficiency. 
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Appendix 

A1. Potential maps generated by LR, RF, FCN, and CNN.
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A2. Confusion matrices of the simulations by LR-CA, RF-CA, FCN-CA, CNN-CA, and ST-CA.
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Cao, C., Dragićević, S., Li, S., 2019. Short-term forecasting of land use change using 
recurrent neural network models. Sustainability 11 (19), 5376. https://doi.org/ 
10.3390/su11195376. 

Cao, K., Huang, B., Wang, S., Lin, H., 2012. Sustainable land use optimization using 
Boundary-based Fast Genetic Algorithm. Comput. Environ. Urban Syst. 36 (3), 
257–269. https://doi.org/10.1016/j.compenvurbsys.2011.08.001. 

Cao, M., Tang, G., Shen, Q., Wang, Y., 2015. A new discovery of transition rules for 
cellular automata by using cuckoo search algorithm. International Journal of 
Geographical Information Science 29 (5), 806–824. https://doi.org/10.1080/ 
13658816.2014.999245. 

Ding, W.J., Wang, R.Q., Wu, D.Q., Liu, J., 2013. Cellular automata model as an intuitive 
approach to simulate complex land-use changes: An evaluation of two multi-state 
land-use models in the Yellow River Delta. Stoch. Env. Res. Risk Assess. 27 (4), 
899–907. https://doi.org/10.1007/s00477-012-0624-7. 

Estoque, R.C., Murayama, Y., 2012. Examining the potential impact of land use / cover 
changes on the ecosystem services of Baguio city, the Philippines: A scenario-based 
analysis. Appl. Geogr. 35 (1–2), 316–326. https://doi.org/10.1016/j. 
apgeog.2012.08.006. 

Feng, J., Liu, J., Pan, C., 2018. Complex Behavior Recognition Based on Convolutional 
Neural Network: A Survey. In: 2018 14th International Conference on Mobile Ad- 
Hoc and Sensor Networks (MSN), pp. 103–108. https://doi.org/10.1109/ 
MSN.2018.00024. 

Feng, Y., Tong, X., 2018. Dynamic land use change simulation using cellular automata 
with spatially nonstationary transition rules. GIScience and Remote Sensing 55 (5), 
678–698. https://doi.org/10.1080/15481603.2018.1426262. 

Gharaibeh, A., Shaamala, A., Obeidat, R., Al-Kofahi, S., 2020. Improving land-use change 
modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 
6 (9), e05092. https://doi.org/10.1016/j.heliyon.2020.e05092. 

Gounaridis, D., Chorianopoulos, I., Symeonakis, E., Koukoulas, S., 2019. A Random 
Forest-Cellular Automata modelling approach to explore future land use/cover 
change in Attica (Greece), under different socio-economic realities and scales. Sci. 
Total Environ. 646, 320–335. https://doi.org/10.1016/j.scitotenv.2018.07.302. 

Grekousis, G., 2019. Artificial neural networks and deep learning in urban geography: A 
systematic review and meta-analysis. Comput. Environ. Urban Syst. 74, 244–256. 

He, J., Li, X., Yao, Y., Hong, Y., Jinbao, Z., 2018. Mining transition rules of cellular 
automata for simulating urban expansion by using the deep learning techniques. 
International Journal of Geographical Information Science 32 (10), 2076–2097. 
https://doi.org/10.1080/13658816.2018.1480783. 

Houghton, R.A., Nassikas, A.A., 2017. Global and regional fluxes of carbon from land use 
and land cover change 1850–2015. Global Biogeochem. Cycles 31 (3), 456–472. 
https://doi.org/10.1002/2016GB005546. 

Ji, S., Xu, W., Yang, M., Yu, K., 2013. 3D Convolutional neural networks for human 
action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35 (1), 221–231. https:// 
doi.org/10.1109/TPAMI.2012.59. 

Ju, H., Zhang, Z., Zuo, L., Wang, J., Zhang, S., Wang, X., Zhao, X., 2016. Driving forces 
and their interactions of built-up land expansion based on the geographical detector 
- a case study of Beijing, Chinaudy of Beijing, China. International Journal of 
Geographical Information Science 30 (11), 2188–2207. https://doi.org/10.1080/ 
13658816.2016.1165228. 

Kourosh Niya, A., Huang, J., Kazemzadeh-Zow, A., Karimi, H., Keshtkar, H., Naimi, B., 
2020. Comparison of three hybrid models to simulate land use changes: A case study 
in Qeshm Island. Iran. Environmental Monitoring and Assessment 192 (5), 302. https:// 
doi.org/10.1007/s10661-020-08274-6. 

Lan, Q., Wang, Z., Wen, M., Zhang, C., Wang, Y., 2017. High performance 
implementation of 3D convolutional neural networks on a GPU. Computational 
Intelligence and Neuroscience 2017, 1–8. https://doi.org/10.1155/2017/8348671. 

Leonov, S. C., Vasilyev, A. N., Makovetskii, A., & Vitaly, K. 2019. Analysis of the 
convolutional neural network architectures in image classification problems. In A. G. 
Tescher & T. Ebrahimi (Eds.), Applications of Digital Image Processing XLII. SPIE. 
10.1117/12.2529232. 

Li, C., Yang, M., Li, Z., Wang, B., 2021. How will Rwandan land use/land cover change 
under high population pressure and changing climate? Applied Sciences 
(Switzerland) 11 (12). https://doi.org/10.3390/app11125376. 

Li, G., Zhang, F., Jing, Y., Liu, Y., Sun, G., 2017a. Response of evapotranspiration to 
changes in land use and land cover and climate in China during 2001–2013. Sci. 
Total Environ. 596, 256–265. https://doi.org/10.1016/j.scitotenv.2017.04.080. 

Li, S., Liu, X., Li, X., Chen, Y., 2017b. Simulation model of land use dynamics and 
application: Progress and prospects. Journal of Remote Sensing 21 (3), 329–340. 

Liang, X., Guan, Q., Clarke, K.C., Liu, S., Wang, B., Yao, Y., 2021. Understanding the 
drivers of sustainable land expansion using a patch-generating land use simulation 
(PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 85, 
101569. https://doi.org/10.1016/j.compenvurbsys.2020.101569. 

Liao, J., Tang, L., Shao, G., Su, X., Chen, D., Xu, T., 2016. Incorporation of extended 
neighborhood mechanisms and its impact on urban land-use cellular automata 
simulations. Environ. Modell. Software 75, 163–175. https://doi.org/10.1016/j. 
envsoft.2015.10.014. 

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., Yan, C., 
Wu, S., Shi, X., Jiang, N., Yu, D., Pan, X., Chi, W., 2014a. Spatiotemporal 
characteristics, patterns, and causes of land-use changes in China since the late 
1980s. J. Geog. Sci. 24 (2), 195–210. https://doi.org/10.1007/s11442-014-1082-6. 

Liu, X., Hu, G., Ai, B., Li, X., Tian, G., Chen, Y., Li, S., 2018. Simulating urban dynamics in 
China using a gradient cellular automata model based on S-shaped curve evolution 
characteristics. International Journal of Geographical Information Science 32 (1), 
73–101. https://doi.org/10.1080/13658816.2017.1376065. 

Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., Pei, F., 2017. A future 
land use simulation model (FLUS) for simulating multiple land use scenarios by 
coupling human and natural effects. Landscape Urban Plann. 168 (October), 94–116. 
https://doi.org/10.1016/j.landurbplan.2017.09.019. 

Liu, Y., Fang, F., Li, Y., 2014b. Key issues of land use in China and implications for policy 
making. Land Use Policy 40, 6–12. https://doi.org/10.1016/j. 
landusepol.2013.03.013. 

Ma, Z., Xu, Y., Peng, J., Chen, Q., Wan, D., He, K., Shi, Z., Li, H., 2018. Spatial and 
temporal precipitation patterns characterized by TRMM TMPA over the Qinghai- 
Tibetan plateau and surroundings. Int. J. Remote Sens. 39 (12), 3891–3907. https:// 
doi.org/10.1080/01431161.2018.1441565. 

Milad, M., Ming, Y., Firuz, M., Hanan, Z., 2016. The simulation and prediction of spatio- 
temporal urban growth trends using cellular automata models: A review. Int. J. Appl. 
Earth Obs. Geoinf. 52, 380–389. https://doi.org/10.1016/j.jag.2016.07.007. 

Mishra, V.N., Rai, P.K., Prasad, R., Punia, M., Nistor, M., 2018. Prediction of spatio- 
temporal land use/land cover dynamics in rapidly developing Varanasi district of 
Uttar Pradesh, India, using geospatial approach: A comparison of hybrid models. 
Applied Geomatics 10 (3), 257–276. https://doi.org/10.1007/s12518-018-0223-5. 

Mustafa, A., Cools, M., Saadi, I., Teller, J., 2017. Coupling agent-based, cellular automata 
and logistic regression into a hybrid urban expansion model (HUEM). Land Use 
Policy 69, 529–540. https://doi.org/10.1016/j.landusepol.2017.10.009. 

Mustafa, A., Rienow, A., Saadi, I., Cools, M., Teller, J., 2018. Comparing support vector 
machines with logistic regression for calibrating cellular automata land use change 
models. European Journal of Remote Sensing 51 (1), 391–401. https://doi.org/ 
10.1080/22797254.2018.1442179. 

Pontius, R.G., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., 
Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C.D., McConnell, W., Mohd 
Sood, A., Pijanowski, B., Pithadia, S., Sweeney, S., Trung, T.N., Veldkamp, A.T., 
Verburg, P.H., 2008. Comparing the input, output, and validation maps for several 
models of land change. Annals of Regional Science 42 (1), 11–37. https://doi.org/ 
10.1007/s00168-007-0138-2. 

Rahman, M.T.U., Esha, E.J., 2020. Prediction of land cover change based on CA-ANN 
model to assess its local impacts on Bagerhat, southwestern coastal Bangladesh. 
Geocarto International 1–23. https://doi.org/10.1080/10106049.2020.1831621. 

Ren, Y., Lü, Y., Comber, A., Fu, B., Harris, P., Wu, L., 2019. Spatially explicit simulation 
of land use/land cover changes: Current coverage and future prospects. Earth Sci. 
Rev. 190 (March), 398–415. https://doi.org/10.1016/j.earscirev.2019.01.001. 

Rienow, A., Goetzke, R., 2015. Supporting SLEUTH - Enhancing a cellular automaton 
with support vector machines for urban growth modeling. Comput. Environ. Urban 
Syst. 49, 66–81. https://doi.org/10.1016/j.compenvurbsys.2014.05.001. 

Sankarrao, L., Ghose, D.K., Rathinsamy, M., 2021. Predicting land-use change: 
Intercomparison of different hybrid machine learning models. Environ. Modell. 
Software 145, 105207. https://doi.org/10.1016/j.envsoft.2021.105207. 

Sante, I., Garcia, A.M., Miranda, D., Crecente, R., 2010. Cellular automata models for the 
simulation of real-world urban processes: A review and analysis. Landscape Urban 
Plann. 96 (2), 108–122. https://doi.org/10.1016/j.landurbplan.2010.03.001. 

Schulp, C.J.E., Nabuurs, G.J., Verburg, P.H., 2008. Future carbon sequestration in 
Europe-Effects of land use change. Agric. Ecosyst. Environ. 127 (3–4), 251–264. 
https://doi.org/10.1016/j.agee.2008.04.010. 

Shafizadeh-Moghadam, H., Minaei, M., Feng, Y., Pontius, R.G., 2019. GlobeLand30 maps 
show four times larger gross than net land change from 2000 to 2010 in Asia. Int. J. 
Appl. Earth Obs. Geoinf. 78, 240–248. https://doi.org/10.1016/j.jag.2019.01.003. 

Shafizadeh-Moghadam, H., Tayyebi, A., Helbich, M., 2017. Transition index maps for 
urban growth simulation: application of artificial neural networks, weight of 
evidence and fuzzy multi-criteria evaluation. Environ. Monit. Assess. 189 (6) 
https://doi.org/10.1007/s10661-017-5986-3. 

Shi, G., Jiang, N., Yao, L., 2018. Land Use and Cover Change during the Rapid Economic 
Growth Period from 1990 to 2010: A Case Study of Shanghai. Sustainability 10 (2), 
426. https://doi.org/10.3390/su10020426. 

Shi, M., Wu, H., Fan, X., Jia, H., Dong, T., He, P., Baqa, M.F., Jiang, P., 2021. Trade-offs 
and synergies of multiple ecosystem services for different land use scenarios in the 
yili river valley, china. Sustainability 13 (3), 1577. https://doi.org/10.3390/ 
su13031577. 

Sidharthan, R., Bhat, C.R., 2012. Incorporating Spatial Dynamics and Temporal 
Dependency in Land Use Change Models. Geographical Analysis 44 (4), 321–349. 
https://doi.org/10.1111/j.1538-4632.2012.00854.x. 

Tobler, W., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region. 
Economic Geography 46 (2), 234–240. https://doi.org/10.2307/143141. 

Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M., 2015. Learning spatiotemporal 
features with 3D convolutional networks. In: Proceedings of the IEEE International 
Conference on Computer Vision. https://doi.org/10.1109/ICCV.2015.510. 

Vani, M., Prasad, P.R.C., 2021. Modelling urban expansion of a south-east Asian city, 
India: Comparison between SLEUTH and a hybrid CA model. In: Modeling Earth 
Systems and Environment. https://doi.org/10.1007/s40808-021-01150-3. 

J. Geng et al.                                                                                                                                                                                                                                     

https://doi.org/10.1007/s10661-019-7330-6
https://doi.org/10.1007/s10661-019-7330-6
https://doi.org/10.1016/S0731-7085(99)00272-1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/su11195376
https://doi.org/10.3390/su11195376
https://doi.org/10.1016/j.compenvurbsys.2011.08.001
https://doi.org/10.1080/13658816.2014.999245
https://doi.org/10.1080/13658816.2014.999245
https://doi.org/10.1007/s00477-012-0624-7
https://doi.org/10.1016/j.apgeog.2012.08.006
https://doi.org/10.1016/j.apgeog.2012.08.006
https://doi.org/10.1109/MSN.2018.00024
https://doi.org/10.1109/MSN.2018.00024
https://doi.org/10.1080/15481603.2018.1426262
https://doi.org/10.1016/j.heliyon.2020.e05092
https://doi.org/10.1016/j.scitotenv.2018.07.302
http://refhub.elsevier.com/S0303-2434(22)00115-5/h0070
http://refhub.elsevier.com/S0303-2434(22)00115-5/h0070
https://doi.org/10.1080/13658816.2018.1480783
https://doi.org/10.1002/2016GB005546
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1080/13658816.2016.1165228
https://doi.org/10.1080/13658816.2016.1165228
https://doi.org/10.1007/s10661-020-08274-6
https://doi.org/10.1007/s10661-020-08274-6
https://doi.org/10.1155/2017/8348671
https://doi.org/10.3390/app11125376
https://doi.org/10.1016/j.scitotenv.2017.04.080
http://refhub.elsevier.com/S0303-2434(22)00115-5/h0120
http://refhub.elsevier.com/S0303-2434(22)00115-5/h0120
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.1016/j.envsoft.2015.10.014
https://doi.org/10.1016/j.envsoft.2015.10.014
https://doi.org/10.1007/s11442-014-1082-6
https://doi.org/10.1080/13658816.2017.1376065
https://doi.org/10.1016/j.landurbplan.2017.09.019
https://doi.org/10.1016/j.landusepol.2013.03.013
https://doi.org/10.1016/j.landusepol.2013.03.013
https://doi.org/10.1080/01431161.2018.1441565
https://doi.org/10.1080/01431161.2018.1441565
https://doi.org/10.1016/j.jag.2016.07.007
https://doi.org/10.1007/s12518-018-0223-5
https://doi.org/10.1016/j.landusepol.2017.10.009
https://doi.org/10.1080/22797254.2018.1442179
https://doi.org/10.1080/22797254.2018.1442179
https://doi.org/10.1007/s00168-007-0138-2
https://doi.org/10.1007/s00168-007-0138-2
https://doi.org/10.1080/10106049.2020.1831621
https://doi.org/10.1016/j.earscirev.2019.01.001
https://doi.org/10.1016/j.compenvurbsys.2014.05.001
https://doi.org/10.1016/j.envsoft.2021.105207
https://doi.org/10.1016/j.landurbplan.2010.03.001
https://doi.org/10.1016/j.agee.2008.04.010
https://doi.org/10.1016/j.jag.2019.01.003
https://doi.org/10.1007/s10661-017-5986-3
https://doi.org/10.3390/su10020426
https://doi.org/10.3390/su13031577
https://doi.org/10.3390/su13031577
https://doi.org/10.1111/j.1538-4632.2012.00854.x
https://doi.org/10.2307/143141
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1007/s40808-021-01150-3


International Journal of Applied Earth Observation and Geoinformation 110 (2022) 102789

14

Verburg, P.H., Schot, P.P., Dijst, M.J., Veldkamp, A., 2004. Land use change modelling: 
Current practice and research priorities. GeoJournal 61 (4), 309–324. https://doi. 
org/10.1007/s10708-004-4946-y. 

Xia, C., Zhang, A., Wang, H., Zhang, B., 2019. Modeling urban growth in a metropolitan 
area based on bidirectional flows, an improved gravitational field model, and 
partitioned cellular automata. International Journal of Geographical Information 
Science 33 (5), 877–899. https://doi.org/10.1080/13658816.2018.1562067. 

Xing, W., Qian, Y., Guan, X., Yang, T., Wu, H., 2020. A novel cellular automata model 
integrated with deep learning for dynamic spatio-temporal land use change 
simulation. Computers and Geosciences 137, 104430. https://doi.org/10.1016/j. 
cageo.2020.104430. 

Yang, Q., Li, X., Shi, X., 2008. Cellular automata for simulating land use changes based 
on support vector machines. Comput. Geosci. 34 (6), 592–602. https://doi.org/ 
10.1016/j.cageo.2007.08.003. 

Yao, Y., Liu, X., Li, X., Liu, P., Hong, Y., Zhang, Y., Mai, K., 2017. Simulating urban land- 
use changes at a large scale by integrating dynamic land parcel subdivision and 
vector-based cellular automata. International Journal of Geographical Information 
Science 31 (12), 2452–2479. https://doi.org/10.1080/13658816.2017.1360494. 

Zhai, H., Lv, C., Liu, W., Yang, C., Fan, D., Wang, Z., & Guan, Q. 2021. Understanding 
Spatio-Temporal Patterns of Land Use/Land Cover Change under Urbanization in 
Wuhan, China, 2000–2019. Remote Sensing, 13(16). 10.3390/rs13163331. 

Zhai, Y., Yao, Y., Guan, Q., Liang, X., Li, X., Pan, Y., Yue, H., Yuan, Z., Zhou, J., 2020. 
Simulating urban land use change by integrating a convolutional neural network 
with vector-based cellular automata. International Journal of Geographical 
Information Science 34 (7), 1475–1499. https://doi.org/10.1080/ 
13658816.2020.1711915. 

J. Geng et al.                                                                                                                                                                                                                                     

https://doi.org/10.1007/s10708-004-4946-y
https://doi.org/10.1007/s10708-004-4946-y
https://doi.org/10.1080/13658816.2018.1562067
https://doi.org/10.1016/j.cageo.2020.104430
https://doi.org/10.1016/j.cageo.2020.104430
https://doi.org/10.1016/j.cageo.2007.08.003
https://doi.org/10.1016/j.cageo.2007.08.003
https://doi.org/10.1080/13658816.2017.1360494
https://doi.org/10.1080/13658816.2020.1711915
https://doi.org/10.1080/13658816.2020.1711915

	A hybrid spatiotemporal convolution-based cellular automata model (ST-CA) for land-use/cover change simulation
	1 Introduction
	2 Methodology
	2.1 The ST-CA model framework
	2.1.1 Potential generation module: Employing 3D-CNN to assimilate spatiotemporal properties
	2.1.2 Spatial allocation module: A CA package based on multiple random patch seeds.

	2.2 Other hybrid models developed for comparison
	2.3 Model applications and comparisons
	2.3.1 Data sources and preprocessing
	2.3.2 Sampling for training and validation
	2.3.3 Simulating the future LUCC
	2.3.4 Indicators for accuracy evaluation


	3 Result
	3.1 Generated development potential maps
	3.2 Land-use/land-cover simulation and comparison
	3.2.1 Spatial pattern of simulations
	3.2.2 Accuracy comparisons.
	3.2.3 Error distribution


	4 Discussion
	4.1 Advantages of the ST-CA model
	4.2 Comparison with existing research
	4.3 Limitations and future work

	5 Conclusion
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgments
	Appendix Acknowledgments
	References




