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A B S T R A C T   

Recent location-allocation studies have made considerable progress in optimizing the equality of facility 
accessibility but are focused on automobile transport to facilities. In cities, however, the transit-based accessi-
bility of essential services is crucial for social equality and sustainable development. In this study, we develop a 
modified transit-based maximal accessibility equality (MAE) model for optimizing the equality of the transit- 
based accessibility of healthcare facilities. In this model, equality is quantified as the weighted mean absolute 
deviation (WMAD) of accessibility across locations. Two scenarios are set up to reallocate resources or allocate 
newly added resources. The results reveal that the equality of transit-based healthcare accessibility can be 
significantly improved in both scenarios. A dispersed planning strategy for facilities is suggested to achieve equal 
accessibility. However, the transit-based optimization results significantly differ from the car-based optimization 
results, with more supply allocated to facilities close to transit corridors. This finding implies that the traditional 
car-based MAE model might generate unequal healthcare accessibility for transit-dependent populations and 
thus lead to biased recommendations for healthcare planning. Furthermore, it shows that traditional car-based 
optimization may engender a misallocation of healthcare supply, exacerbating the inequality in healthcare 
accessibility. The necessity of incorporating public transit into public facility planning is highlighted. The 
improved MAE model can be applied in cities where the supply of public services is relatively adequate and 
public transit plays an important role in daily mobility.   

1. Introduction 

Good health and reduced inequalities are two of the 17 Sustainable 
Development Goals (SDGs) by the United Nations. These two goals 
highlight the importance of health equality in sustainable development. 
Although health is related to various factors and varies across in-
dividuals, the healthcare system plays a fundamental role in promoting 
population health [1]. Thus, the equality of healthcare services is critical 
for achieving health equality. 

Researchers from domains such as geography, public health and 
urban planning have paid increasing attention to the measurement of 
the equality of healthcare services [1,2]. This measurement is usually 
based on the accessibility of healthcare services rather than merely 
relying on the distribution of services [1,3,4]. In general, the status quo 
of the accessibility of healthcare services is both insufficient and unequal 
to a certain extent [5,6]. Optimizing the distribution of healthcare ser-
vices through the application of location-allocation models has been a 
focal topic [7,8]. However, existing studies are mainly focused on 

efficiency-related optimization objectives, with little attention paid to 
equality in location-allocation analyses of public resources [7,9]. 

Recently, an innovative stream of studies has made exciting progress 
in incorporating equality concerns into location-allocation modeling 
[10–13]. The proposed maximal accessibility equality (MAE) model 
specifies an objective function that minimizes the total variability of 
accessibility across locations [10]. Since its inception, the MAE model 
has been applied and improved by quite a few studies [11–13]. Although 
the MAE model provides a general framework to optimize spatial 
equality, applications of the model may be limited when considering 
different traffic modes. 

First, existing applications of the MAE model have measured acces-
sibility based on automobile transport [10–12] but have overlooked 
diverse modes such as public transit. In most cities, transit plays a vital 
role in citizens’ daily travel, including health-seeking travel. Existing 
studies have also proven that transit-based healthcare accessibility 
significantly differs from car-based accessibility [14–17]. Therefore, 
MAE models based on the car mode might generate unequal healthcare 
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accessibility, leading to biased suggestions for healthcare planning. 
Second, concerning the measurement of accessibility equality, 

existing studies have been limited to the variance of accessibility [10, 
11]. As noted by Wang and Dai [18], however, variance is highly sen-
sitive to high and low accessibility scores. Therefore, efforts are urgently 
needed to improve the measurement of equality in MAE models. 

Against this backdrop, we aim to improve the MAE model in two 
ways. First, we aim to propose a modified MAE model that optimizes the 
equality of the transit-based accessibility of healthcare facilities. Second, 
we attempt to introduce the weighted mean absolute deviation (WMAD) 
as the measurement of accessibility equality. We then apply the pro-
posed model in a case study of Shenzhen, China, and compare the cor-
responding results with those using the traditional car-based MAE 
model. The differences between the two models highlight the limitation 
of the traditional model due to its failure to consider transit-based 
accessibility. This study methodologically innovates location- 
allocation modeling and presents transferable methods for the 
equality-oriented planning of healthcare facilities or other facilities. 

2. Literature review 

2.1. Accessibility and equality 

In general, accessibility is defined as the ease of and opportunities for 
accessing services or goods for people from different locations [19,20]. 
The accessibility of healthcare facilities can be further classified as po-
tential versus revealed accessibility and spatial versus nonspatial 
accessibility [21]. Spatial accessibility is usually related to potential 
accessibility, which is directly determined by the spatial allocation of 
healthcare services [7] and can effectively intervene in planning. In 
contrast, revealed accessibility is the outcome of the complex in-
teractions among various factors [21], including those that are difficult 
to observe and measure. Therefore, accessibility here is interpreted as 
potential spatial accessibility. 

The accessibility of healthcare services mainly depends on the costs 
of travel to obtain services and the number of opportunities provided by 
facilities [7,20]. A set of measurements of healthcare accessibility has 
been developed by existing studies [1,20]. The two-step floating 
catchment area (2SFCA) method developed by Luo and Wang [22] has 
been one of the most popular methods. This method comprehensively 
considers the interactions between the demand and supply of services, 
inheriting the strengths of the classic gravity model [22,23]. Since its 
inception, the 2SFCA method has been improved by numerous studies, 
which have modified the distance decay function [7,11,24]. Recent 
studies on realistic healthcare-seeking behaviors have shown that the 
distance decay effect and demand supply interaction assumptions in 
2SFCA models accord with reality [25–27]. 

Equality and equity are important policy goals in planning public 
services such as healthcare services [28]. However, it is challenging to 
define and quantitatively measure them. Equality and equity are two 
closely interrelated but different concepts. The former pursues an equal 
allocation of resources among all people, whereas the latter implies that 
more resources should be assigned to people with larger needs to ach-
ieve equal outcomes [2]. The definition of equity usually relies on moral 
judgments; in contrast, equality can be easily understood and measured 
[29]. Furthermore, equality often serves as a basis for the evaluation of 
equity [28]. Equality of healthcare can be interpreted from various 
perspectives, e.g., equality of healthcare access, equality of the distri-
bution of healthcare resources relative to needs, equality of utilization, 
and equality of health outcomes [2,28,30]. With the rapid development 
of accessibility measures, the accessibility-based measurement of 
equality has become widely applied as an appropriate alternative [2,7, 
29]. As stated above, accessibility measures the opportunities to access 
services; therefore, the disparity in accessibility can be utilized to 
quantify the equality of opportunities [1,31]. 

2.2. Transit-based accessibility of healthcare facilities 

Recent years have seen an increased focus on the roles of various 
transport modes in accessing opportunities such as healthcare facilities 
[32–34]. Travel time is a fundamental component of spatial accessibility 
[35]. Notably, travel time differs significantly across various travel 
modes. Existing studies have revealed the disadvantage of the transit 
mode in terms of travel time in various contexts [15,16,36]. It has also 
been underlined that low-income and disabled people, elderly in-
dividuals and children are more dependent on transit; therefore, 
transit-based accessibility has important social equity implications for 
public policy [17,33,37]. 

Estimating travel time by transit is an important but challenging 
task, as travelers can move along only fixed transit routes and transfer 
nodes [34]. Furthermore, transit services are usually operated using 
predefined schedules. Traditionally, researchers have exploited transit 
networks and actual schedule data to provide a more realistic estimation 
of transit travel time [15,34,38]. However, transit schedule data are 
usually unavailable to the public. The traditional approach also fails to 
reflect the dynamic variations in traffic status and travel speed, espe-
cially during peak hours. Recently, the emerging open application pro-
gramming interface (API) produced by online map operators has 
provided a promising approach to travel time estimation [39]. The use 
of an API constitutes a door-to-door approach that can accurately esti-
mate the travel time between any two locations [34]. Furthermore, APIs 
can provide an estimation of travel time by various modes, such as 
driving, taking public transit, walking or cycling [16]. 

2.3. Location-allocation models of public facilities 

A location-allocation model is a kind of operational model that aims 
to optimize the locations of facilities for a certain objective while under a 
set of constraints [9,40]. Location-allocation models have substantially 
contributed to the rational planning of public facilities [8,41,42]. 
However, existing location-allocation studies mainly attempt to mini-
mize the cost of travel to services, maximize the population coverage of 
facilities or minimize the required number of facilities to cover all de-
manders [7,43,44]. In other words, such studies aim to improve the 
accessibility of healthcare facilities, but few of them consider the 
equality of accessibility [7]. 

An exciting advance in location-allocation studies in recent years is 
the MAE model proposed by Wang and Tang [10]. The MAE model 
operationalizes the maximal equality of public resources as the mini-
mization of the disparity in accessibility among various locations or 
populations. In particular, equality of accessibility is measured by the 
variance in accessibility, and the model is transformed into a quadratic 
programming problem [10]. Numerous studies have further improved 
the MAE model. For example, Tao et al. [11] applied it to nursing homes 
and introduced the particle swarm optimization (PSO) algorithm to 
solve the model. Li et al. [12] reorganized the MAE model into a 
two-step procedure, with the first step optimizing the locations of fa-
cilities and the second allocating resources to facilities. Liao et al. [45] 
attempted to improve the allocation principle of primary education re-
sources to achieve equal educational opportunities. 

However, the MAE model may have some limitations in its applica-
tion. First, transit-based accessibility should play a fundamental role in 
understanding and measuring the equality of healthcare services [14, 
15]. The focus on car-based accessibility is insufficient and inaccurate in 
exploring the equality of healthcare facilities [17]. An equality-oriented 
optimization of healthcare facilities based merely on the car mode might 
generate unequal healthcare accessibility, providing biased suggestions 
for healthcare planning. Therefore, it is necessary to develop 
location-allocation models for the equality-oriented optimization of the 
transit-based accessibility of healthcare facilities. Second, the mea-
surement of accessibility equality is critical for the MAE model. In a 
pioneering study [10], the variance in accessibility was introduced to 
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measure equality. Subsequent studies [11–13] adopted this approach to 
measuring equality in MAE model application. As pointed out by Wang 
and Dai [18], however, variance is highly sensitive to high and low 
accessibility scores. It is necessary to improve the MAE model by 
introducing better measurements of accessibility equality. 

3. Methods and data 

3.1. The modified MAE model 

The MAE model [10] is a promising advancement in 
location-allocation modeling, especially for public services. A modified 
MAE model, which further improves the traditional MAE model by 
focusing on healthcare accessibility via the transit mode, is proposed. In 
other words, it aims to maximize the equality of transit-based healthcare 
accessibility. 

The objective function of the modified MAE model is to minimize the 
WMAD of transit-based accessibility. 

WMAD=

∑n
i Pi
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Here, Ai indicates the healthcare accessibility by transit at the i-th 
demand node, Pi is the demand size at the i-th demand node, and n is the 
number of demand nodes. In the WMAD, the absolute deviation between 
accessibility at each demand node and the population-weighted average 
accessibility is first calculated. The population-weighted mean of the 
absolute deviations is then calculated. By incorporating the population- 
based weights, the differences in population among demand nodes can 
be considered. Therefore, the spatial equity of healthcare accessibility 
can be well evaluated based on the WMAD. 

We measure healthcare accessibility using an improved 2SFCA 
method with a continuous distance decay function [7]. The distance 
decay function can take various forms, such as Gaussian, power, expo-
nential and log-logistic functions. Following suggestions by existing 
studies [16,24], we selected the Gaussian distance decay function. The 
2SFCA method assumes that demanders may select from multiple fa-
cilities within a certain catchment area based on the distances and fa-
cilities’ capacity. This assumption has been verified by existing studies 
using the actual hospital visits data [46,47]. 

The objective function of the proposed MAE model is to minimize the 
WMAD of transit-based healthcare accessibility across all locations. In 
optimization, the supply of resources can be adjusted in various ways. 
Inspired by existing studies [10–13], we formulate two different sce-
narios that can provide different references to realistic planning. The 
first is the supply-reallocation scenario, where all supply resources are 
reallocated among existing facility locations. It can be written as follows: 
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under the following constraints: 

Ai =
∑
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(4)  

∑m

j
Sj = Stotal (5)  

Smin ≤ Sj ≤ Smax, ∀j (6)  

where Ai is the accessibility at the i-th demand node; Sj is the supply size 
at candidate facility location j; Pk is the demand size at the k-th node; tij 
(tkj) is the travel time by transit from the i-th (k-th) node to the j-th fa-
cility; T0 is the threshold of travel time defining the catchment areas of 
facilities; f is the Gaussian distance decay function; n and m are the 
numbers of demand nodes and candidate facility locations, respectively; 
Stotal is the total supply size of all facilities; and Smin and Smax are the 
lower and upper bounds of facility size, respectively. 

Equations (3) and (4) formulate the Gaussian-based 2SFCA method 
for measuring transit-based healthcare accessibility. Equation (5) is the 
constraint on the total supply of healthcare resources. Equation (6) as-
signs the lower and upper bounds of facility size. 

However, the supply-reallocation scenario is unrealistic to a certain 
extent. In the real world, reallocating the majority of existing resources 
among facilities is infeasible. To improve the ability of the proposed 
mode to support planning practice, we set up the increasing-supply 
scenario. In the supply-reallocation scenario, the actual resources sup-
plied to facilities are sustained in the optimization. In contrast, in the 
increasing-supply scenario, a certain number of new resources (i.e., 
physicians) are added to existing facilities, optimizing the allocation of 
these new resources among facilities. To formulate this scenario, 
Equations (5) and (6) are replaced as follows: 
∑m

j
ISj = IStotal (7)  

ISmin ≤ ISj ≤ ISmax,∀j (8)  

Sj = ISj + ASj,∀j (9)  

where ISj is the increased supply at facility j; IStotal is the total supply that 
is intended to increase; ISmin and ISmax are the lower and upper bounds of 
the increased supply at each facility, respectively; ASj is the actual 
supply at facility j; and Sj is the total supply at facility j, including the 
increased supply and actual supply. 

The welfare analysis of various allocations of healthcare facilities is 
important for decision-making. Such analysis can be conducted from the 
perspective of consumer welfare or social welfare. The former considers 
both the benefits gained by a consumer from accessibility and the cor-
responding costs [48], while the latter involves the efficiency and equity 
goals of healthcare facility allocation and the provision cost incurred by 
society [49]. Considering that this study is about the equality of 
healthcare accessibility, the social welfare approach is more suitable. 
Based on the framework developed by Song et al. [49], the social welfare 
of healthcare facility allocations can be evaluated based on three as-
pects, i.e., efficiency, equality and cost. The former two positively 
contribute to social welfare, while the latter is negatively related to 
welfare. 

Efficiency and equality are evaluated based on healthcare accessi-
bility. Based on the Gaussian-based 2SFCA formulated by Equations (3) 
and (4), the accessibility score at each demand node represents the 
potential healthcare services (i.e., physicians) that can be accessed by 
each person. Therefore, healthcare accessibility can well express the 
utility of demanders. Efficiency can be evaluated as the average 
healthcare accessibility in each area [50]. The higher the average 
healthcare accessibility is, the better the efficiency. Equality is evaluated 
as the disparity in healthcare accessibility across all demand nodes. In 
this study, the inequality of healthcare accessibility is measured by the 
WMAD, as shown in Equation (1). The smaller the WMAD of healthcare 
accessibility is, the better the equality-related social welfare. The cost of 
healthcare service provision is measured by the number of physicians. 
There might be other costs in the provision of healthcare services, e.g., 
hospital construction costs and medical equipment costs. However, 
these costs are hard to quantify due to a lack of data and are therefore 
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overlooked in our analysis. 
As proven by previous studies [22,23], the 2SFCA method has a 

property, i.e., the population-weighted average accessibility of all de-
mand nodes equals the ratio of total supply to total demand. Therefore, 
for a given study area with a fixed total population, the 
population-weighted average accessibility depends on the total supply 
of healthcare services. When comparing social welfare in various 
healthcare facility allocation scenarios, both the efficiency and cost 
components are determined by the number of physicians, and therefore 
counteracted each other. As a result, social welfare here depends on the 
equality of accessibility. 

Inthe MAE model, it is crucial to accurately estimate travel time by 
transit. As stated above, the online map API approach is advantageous in 
estimating travel time by transit. In China, Baidu Map is a popular online 
map that holds a considerable market share. Existing studies [16] have 
verified its strength in providing travel time estimation for accessibility 
studies. Therefore, we estimate travel time by applying the Baidu Map 
API approach. 

The objective function of the MAE model is a nonlinear function that 
is quite difficult to solve. The original study in which the MAE model 
was proposed [10] utilized a quadratic programming approach to solve 
the model. Heuristic algorithms such as the PSO algorithm [11] and 
genetic algorithm [13] have been exploited by follow-up studies to 
improve solution efficiency. 

We select the PSO algorithm due to its feasibility, as shown in pre-
vious MAE applications [11,51]. The common feature of heuristic al-
gorithms is that they aim to find a quasi-optimal solution to a complex 
problem. The validity and applicability of heuristic algorithms have 
been fully demonstrated [11,12,52,53]. Furthermore, compared to the 
quadratic programming approach, the PSO approach is more flexible 
and thus can be conveniently modified to deal with various forms of 
objective functions of the MAE model. PSO was first developed by 
Kennedy and Eberhart in 1996 [54], inspired by the foraging behavior of 
birds, each of which dynamically adjusts its flight direction based on its 
neighbors. Similarly, PSO specifies a certain number of particles. Each 
particle represents a solution to the problem, i.e., the sizes of facilities in 
location-allocation problems, which satisfies the constraint conditions 
[11]. In each iteration, the position of each particle is updated based on 
its previous position and current velocity. The velocity of a particle is 
calculated based on its previous velocity and the gap between its pre-
vious position and the best positions. Here, both the best position of a 
particle in previous iterations and the best position among all particles 
are considered. This iteration process is not terminated until the objec-
tive function reaches its best value. Therefore, the optimal equality of 
healthcare accessibility, as expressed by Equation (2), should be under 
all constraints given by Equations (3)–(6). 

3.2. Study area and data collection 

The city of Shenzhen is selected as the study area. Shenzhen is a 
megacity, and in 2020, its population was 17.56 million. Although rapid 
economic development and urbanization have occurred in Shenzhen 
during the four decades since China’s opening up and reform, public 
services, including healthcare services, are less developed in Shenzhen. 
Previous studies have revealed significant inequality in healthcare ser-
vices in Shenzhen [16,55]. Therefore, Shenzhen is a suitable city for 
analyzing and optimizing the equality of healthcare accessibility. 

Three types of data are used in this study: (1) healthcare facility data, 
(2) population data, and (3) travel times between demand nodes and 
facilities. 

In this study, public general hospitals are considered healthcare fa-
cilities. In China, public hospitals play a predominant role in the 
healthcare system [56]. In 2021, public and private hospitals provided 
84.2% and 15.8% of inpatient and outpatient services across the country 
[57]. Public general hospital data, including the names, addresses and 
numbers of physicians, were collected from the official website of the 

Shenzhen Municipal Health Commission [58]. As of July 2021, there 
were 71 general hospitals. These hospitals geocoded by using the Baidu 
Map geocoding API to obtain their coordinates. The distribution of 
general hospitals is shown in Fig. 1. 

Population data for 2016 were collected from the statistical year-
books of ten districts in Shenzhen. The total permanent population in 
Shenzhen in 2016 was 11.91 million. We assume that the prefecture of 
Shenzhen is the level-1 administrative division. From top to bottom, the 
district, the subdistrict and the community are level-2, level-3 and level- 
4 administrative divisions. In this study, communities, which are the 
finest spatial units in Chinese cities, are adopted as units of analysis. 
There are 10 districts, 67 subdistricts and 771 communities in Shenzhen. 
The average population of each community is 15.4 thousand residents. 
The population of each community is aggregated at the location where 
the community administrative institution is located, which usually can 
be used to approximatively represent the distribution of the population. 
Due to the lack of community-level boundary data, Fig. 1 visualizes the 
distribution of the subdistrict-level population density in Shenzhen. 
According to the latest population census data from 2020 [59], Shenz-
hen has a very young population, with the labor force population be-
tween 15 and 59 accounting for 80% of the total population. 
Furthermore, a recent study [26] shows that healthcare-seeking 
behavior in Shenzhen differs by age, income and educational level but 
only to a moderate extent. Therefore, the population’s healthcare needs 
are relatively equal across different locations in Shenzhen. 

Travel times from communities to facilities by transit or by car were 
collected by using Baidu Map Transit and Driving Navigation APIs 
(lbsyun.baidu.com). An important advantage of the API approach is that 
the first-mile and last-mile travel times and transfer times are included 
in the estimated travel time [16]. This data collection was conducted for 
the period from 10 a.m. to 4 p.m. on working days. The travel time 
during peak hours is much longer than that during nonpeak hours due to 
traffic congestion. However, most travel to hospitals occurs during 
nonpeak hours. Analyses including peak hours would induce significant 
bias when estimating travel time. Therefore, peak hours were excluded 
from our analyses. 

3.3. Parameter settings 

In the application of the proposed model, several parameters are 
needed. First, candidate facility locations need to be specified, as this 
specification predefines where facilities can be located in the optimi-
zation. Since our focus is on transit-based accessibility in location- 
allocation modeling, the candidate locations are set to be the same as 
the 71 existing healthcare facilities. With this approach, the optimiza-
tion aims to find the optimal allocation of healthcare supply across 
predefined locations. Second, in Equations (5) and (6), the total supply 
size (Stotal) and the lower and upper bounds of facility size (Smin and Smax) 
are the parameters to be set. Stotal is set to be the same as the actual total 
supply, i.e., 19,924 physicians. The sizes of existing facilities range from 
23 to 903 physicians, which may be dependent on relevant planning 
standards. Therefore, Smin and Smax are set slightly lower than the min-
imum and higher than the maximum of actual sizes, i.e., 20 and 1000 
physicians, respectively. Third, in Equations (7) and (8), IStotal is set as 
2000 physicians, approximately 10% of the total actual supply. ISmin and 
ISmax are set as 0 and 200 physicians, respectively. Fourth, the mea-
surement of healthcare accessibility is fundamental for the MAE model. 
Only one parameter, i.e., the size of the catchment area (T0), is needed to 
calculate accessibility through the Gaussian-based 2SFCA approach. 
Following existing studies [60], T0 is set as the maximum travel time 
from each community to its closest facility, ensuring that each com-
munity can reach at least one facility in the calculated accessibility. 
After rounding up, T0 is set as 50 or 90 min for the car and transit modes, 
respectively. Furthermore, various values of T0 are tested in our 
analysis. 
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4. Results 

4.1. Actual transit- and car-based healthcare accessibility 

Actual healthcare accessibility by transit and by car was first 
measured using the Gaussian-based 2SFCA method, providing a baseline 

for evaluating the performance of the optimization results. As shown in 
Fig. 2, the status quo of both the transit- and car-based accessibility of 
healthcare facilities is unevenly distributed in Shenzhen. In general, 
residents living in the Futian, Luohu and Longgang Districts have higher 
healthcare accessibility. In contrast, healthcare accessibility is relatively 
low in western and eastern districts such as Bao’an, Guangming, 

Fig. 1. The distribution of the population density and healthcare facilities in Shenzhen.  

Fig. 2. Distribution of actual transit- and car-based healthcare accessibility.  
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Dapeng, Pingshan and Yantian. The unevenness of transit-based 
healthcare accessibility is slightly larger than that of car-based accessi-
bility. Additionally, the WMAD of transit-based accessibility is 34% 
larger than that of car-based accessibility. 

4.2. Comparison with traditional MAE model 

To demonstrate the advantage of the proposed model (WMAD 
model) against the traditional MAE model using the variance metric 
(VAR model), the distributions of the optimal accessibility of the two 
models are compared. As shown in Fig. 3, the optimal accessibility of 
each subdistrict is ranked in descending order. As stated above, the VAR 
model is more sensitive to high and low accessibility scores. As a result, 
in the VAR model, high (low) accessibility scores are lower (higher) than 
in the WMAD model. However, the price of this result is that the 
disparity in accessibility for a large part of subdistricts is more obvious in 
the VAR model than in the WMAD model. These outliers of accessibility 
might be caused by locational advantages and transport networks. It is 
highly costly to mitigate the accessibility inequality caused by these 
outliers. Therefore, the WMAD model performs better in generating 
equal accessibility for the majority of demanders. 

4.3. Optimal transit-based healthcare accessibility in the supply- 
reallocation scenario 

To improve the reliability of the optimization results, we considered 
various scenarios of the modified MAE model with different catchment 
area sizes in accessibility measurement. Both the optimal WMAD and 
actual WMAD were presented, based on which the improvement in 
equality was calculated as the ratio of the gap between the optimal and 
actual WMAD to the actual WMAD. As shown in Table 1, as the catch-
ment area size grows, both the optimal and actual WMAD tend to 
decrease. This result is consistent with our expectations. For the 
Gaussian distance decay function, a larger catchment area means a 
weaker distance decay effect and, thus, more evenly distributed acces-
sibility. Therefore, it is difficult to determine the best catchment area 
size based merely on the change trend of the optimal WMAD. The 
improvement in equality is calculated as the proportion that the optimal 
WMAD decreases compared to the actual WMAD, i.e., (actual WMAD −
optimal WMAD)/actual WMAD. It takes into account the decreasing 
trends of both the optimal and actual WMAD. Therefore, this measure is 
more suitable for measuring the improvement in accessibility equality 
with various catchment area sizes than the optimal WMAD. 

As shown in Table 1, the improvement in equality decreases with the 
catchment area size, indicating that the equality of accessibility can be 
improved by a larger proportion in scenarios with a smaller catchment 

area. However, this result does not imply that a smaller catchment area 
size performs better in the MAE model, given that a smaller catchment 
area size indicates a larger inequality of both optimal and actual 
accessibility. Furthermore, in scenarios with small catchment area sizes, 
some demand units might be excluded from catchment areas and face 
serious inequality. To ensure that each community can reach at least one 
facility within the catchment area, its size is set as 90 min in the 
following analyses. In this scenario, the optimal WMAD of accessibility 
is approximately one-quarter of the average accessibility. This is a 
relatively small deviation, indicating that the optimal accessibility is 
quite evenly distributed. Compared to the status quo, the equality of 
transit-based healthcare accessibility can be improved by approximately 
40%. 

The optimal allocation of healthcare supply (i.e., physicians) among 
hospitals is shown in Fig. 4a. Regarding the status quo, as shown in 
Fig. 1, large hospitals with more than 500 physicians are mainly 
concentrated in central districts (Luohu, Futian and Nanshan). After 
optimization, however, large hospitals are dispersed in various districts. 
This result suggests that the dispersed distribution of large and high- 
level hospitals is essential to the policy goal of equal healthcare 
accessibility. 

Fig. 4 visualizes the considerable gaps between the optimal and 
actual distribution of healthcare supply. A positive (or negative) gap 
means that the healthcare supply at a hospital should be expanded (or 
reduced) to achieve equal accessibility. Two findings can be drawn from 
the distribution of such gaps. First, most hospitals in central districts 
(Luohu, Futian and Nanshan) have negative gaps. This finding implies 
an overconcentration of the actual healthcare supply in central districts, 
leading to uneven healthcare accessibility. Second, most positive gaps 
are found in hospitals close to metro lines. This finding suggests that 
more healthcare supply should be allocated along major transit corri-
dors to better meet the demand of transit-dependent populations and 
promote healthcare equality. 

The optimal transit-based healthcare accessibility generated by the 
proposed model is presented in Fig. 5. Compared to the actual accessi-
bility (see Fig. 2a), the optimal accessibility is much more evenly 
distributed. The accessibility in most areas is between 0.0012 and 
0.0022, i.e., within a 0.005 interval from the population-weighted 
average accessibility (0.0017). Low accessibility remains in only four 
areas, i.e., the junction area of Nanshan and Bao’an, the junction area of 
Longhua and Guangming, the junction area of Yantian and Pingshan, 
and the southeastern part of Dapeng. These areas are mountainous, with 
a low population density and poor transport access. The results above 
indicate that the equality of transit-based healthcare accessibility is 
significantly improved by the optimization model. 

In addition to the WMAD, we evaluated the improvement in acces-
sibility equality based on common measures such as the Gini coefficient 
(GC) and coefficient of variation (CV). A larger GC or CV value indicates 
a larger disparity in accessibility, i.e., poorer equality of accessibility. As 
shown in Table 2, for either the actual or optimal scenarios, transit- 
based accessibility is more unequal than car-based accessibility, 
reflecting a more unequal distribution of transit-based accessibility. 
Compared to the status quo, the inequality of transit-based and car- 

Fig. 3. Distribution of optimal accessibility using the WMAD and VAR metrics 
in descending order. 

Table 1 
Transit-based optimization results with various catchment area sizes.  

Catchment 
area (min) 

Optimal 
WMAD 

WMAD/Average 
accessibility 

Actual 
WMAD 

Improvement in 
equality 

70 4.53E-04 0.27 8.58E-04 47.2% 
80 4.28E-04 0.26 7.68E-04 44.3% 
90 4.13E-04 0.25 6.87E-04 39.9% 
100 3.92E-04 0.23 6.24E-04 37.1% 
110 3.58E-04 0.21 5.74E-04 36.6% 
120 3.16E-04 0.19 5.25E-04 36.0% 

Note: WMAD/Average accessibility indicates the ratio of the WMAD to the 
average accessibility. 
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based healthcare accessibility is mitigated by approximately 30% (31% 
for the GC and 29% for the CV) and 38% (39% for the GC and 37% for 
the CV), respectively. The decrease in the WMAD (40% and 49% for 
transit- and car-based accessibility, respectively) is larger than that in 
the GC and the CV. The results summarized in Table 2 show that the 
MAE model significantly improves the equality of accessibility 

regardless of the evaluation metrics. 

4.4. Comparison with the car-based optimization results 

The optimization model was also run based on travel times by car, 
based on which a comparison with the transit-based optimization results 

Fig. 4. Comparisons of healthcare supply using the optimal and actual distribution with regard to the transit mode; (a) optimal allocation of healthcare supply; (b) 
gap of the optimal supply and the actual supply. 

Fig. 5. Distribution of optimal transit-based healthcare accessibility.  
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could be made. As shown in Fig. 6a, to achieve equal car-based 
healthcare accessibility, large hospitals should be dispersed across the 
city rather than be concentrated in central districts. 

Fig. 6b visualizes the differences between the transit-based and car- 
based optimal allocation of healthcare supply. Positive differences 
indicate that more healthcare supply should be allocated to these hos-
pitals in the transit mode than in the car mode. Most of these positive 
differences appear in hospitals located close to metro lines, especially 
those close to transfer stations. Once again, this finding suggests that 
greater importance should be attached to the supply of healthcare re-
sources along major transit corridors and hubs to promote healthcare 
equality. 

4.5. Equality loss due to the misallocation of healthcare supply 

According to our analyses, the optimal distributions of healthcare 
resources are quite different for the transit mode and the car mode. 
Therefore, traditional studies seeking to optimize the equality of 
healthcare accessibility based on the car mode may engender a 

misallocation of healthcare supply. Such misallocation will cause a loss 
in accessibility equality and lead to biased policy suggestions for 
healthcare planning. To quantify this potential equality loss due to 
supply misallocation, we measured healthcare accessibility by 
combining transit-based travel times with the car-based optimal supply 
and compared the resulting inequality to that of optimal transit-based 
accessibility. The former represents accessibility with supply misallo-
cation, whereas the latter represents accessibility with an appropriate 
allocation of supply. As shown in Table 3, supply misallocation increases 
accessibility inequality (measured by the WMAD) by 20% for the transit 
mode. Similarly, supply misallocation increases accessibility inequality 
by 15% for the car mode, which is smaller than the equality loss for the 
transit mode. Notably, even with supply misallocation, the WMAD of 
car-based accessibility is still smaller than that of optimal transit-based 
accessibility (3.03E-04 versus 4.13E-04). This finding indicates that if 
healthcare supply were allocated based on the transit mode, the equality 
of transit-based healthcare accessibility could be improved, while the 
equality of car-based accessibility would remain moderate. In contrast, 
if healthcare supply were allocated based on the car mode, there would 

Table 2 
Inequality of actual and optimal healthcare accessibility.  

Scenario WMAD GC CV 

Actual transit-based accessibility 6.87E-04 0.268 0.467 
Actual car-based accessibility 5.14E-04 0.198 0.347 
Optimal transit-based accessibility 4.13E-04 0.185 0.334 
Optimal car-based accessibility 2.64E-04 0.121 0.219  

Fig. 6. Comparisons of healthcare supply using the car-based optimal allocation results and transit-based optimization results; (a) car-based optima allocation of 
healthcare supply; (b) gap between the car-based results and the transit-based results. 

Table 3 
Inequality of healthcare accessibility with or without supply misallocation.  

Optimal supply Transport mode WMAD 

Car-based Transit 4.96E-04 
Transit-based Transit 4.13E-04 
Transit-based Car 3.03E-04 
Car-based Car 2.64E-04  
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be a considerable inequality in healthcare accessibility between the 
transit and car modes. The comparison of travel times from all com-
munities to all hospitals shows the transit-based time is longer than the 
car-based time for 99.92% of community-hospital pairs. In other words, 
transit-based travel is disadvantaged in healthcare accessibility 
compared to car-based travel in most situations. Therefore, the optimal 
distribution of healthcare resources based on the transit mode should 
also indicate relatively equal accessibility for car-based travelers. This 
finding suggests that the transit-oriented allocation of healthcare supply 
can generate better overall equality of healthcare accessibility. 

4.6. Optimal transit-based healthcare accessibility in the increasing- 
supply scenario 

Fig. 7 shows the distribution of optimal transit-based healthcare 
accessibility and newly increased supply in the increasing-supply sce-
nario. In this scenario, 2000 physicians (approximately 10% of the total 
actual supply) are added among facilities. As shown in the figure, most 
of the increased supply is allocated in areas where accessibility is rela-
tively low, including Bao’an, Longhua, western Longgang, Pingshan and 
Yantian. As a result, the WMAD decreases to 6.34E-04, which is 
approximately 8.1% lower than the status quo. In other words, by 
increasing supply by 10%, the equality of healthcare accessibility is 
improved by 8.1%. These results demonstrate that the modified MAE 
model and the increasing-supply scenario can be useful for planning and 
allocating newly added resources for equality. 

When comparing the supply-reallocation scenario with the status 
quo, the number of physicians and the efficiency are equal in the two 
scenarios. Similarly, as for the increasing-supply scenario, the number of 
physicians is increased by 10% compared to the status quo. As a result, 
the cost and efficiency both increased by 10%, and counteracted each 
other. Therefore, the social welfare of healthcare facility allocation 
mainly depends on the equality of accessibility. Based on the optimal 
WMAD, the supply-reallocation scenario has the best social welfare, 
followed by the increasing-supply scenario. Both optimization scenarios 
can improve the social welfare of healthcare facility allocation. 

5. Discussion and conclusions 

Equal access to healthcare facilities or other opportunities holds 
great importance for promoting social well-being and sustainable 
development. Location-allocation models have played a vital role in 
supporting and informing the rational planning of healthcare resources. 
Recent studies have proposed the MAE model for optimizing the 
equality of access to public facilities. However, there are still research 

gaps in incorporating the transit mode into the MAE model and 
improving the measurement of accessibility equality. The current study 
contributes to the literature by filling these research gaps. We develop a 
modified MAE model that aims to maximize the equality of transit-based 
healthcare accessibility, measured by the WMAD of accessibility. 
Several findings are drawn from the case study of Shenzhen, China. 

The optimization results revealed that the equality of healthcare 
accessibility can be significantly improved by the modified MAE model 
by approximately 40%. Comparisons of the WMAD, GC and CV of 
optimal and actual healthcare accessibility consistently confirm this 
conclusion. Furthermore, our analyses reveal the uneven distribution of 
healthcare accessibility in the status quo. After optimization, a relatively 
even distribution of healthcare accessibility is achieved. 

In the supply-reallocation scenario, the locations of facilities are kept 
stationary, and no additional supply is added. Improvement is achieved 
solely through the reallocation of healthcare supply among existing fa-
cilities. In the increasing-supply scenario, a certain number of resources 
are added and allocated, and the equality of accessibility is also signif-
icantly improved as a result. These findings are in accordance with those 
of previous studies [61] that both reallocating existing resources and 
increasing resources can significantly improve accessibility equality. 

Furthermore, we compared the transit-based optimization results 
with the car-based optimization results. With the actual distribution of 
healthcare resources, transit-based healthcare accessibility is more un-
equal than car-based accessibility, reflecting a more unequal configu-
ration of transit networks than of road networks. This finding agrees 
with existing studies on public service accessibility based on multiple 
modes [15,16,32]. We further confirmed that MAE models can signifi-
cantly improve the equality of both transit-based and car-based acces-
sibility. However, both the optimal equality and the improvement in the 
equality of transit-based accessibility are poorer than those of car-based 
accessibility. One possible reason is that the site selection of existing 
healthcare facilities is mainly driven by the car-oriented development 
mode. That is, greater consideration is given to the proximity of facilities 
to major roads. Therefore, more attention should be paid to whether 
public facilities can be easily accessed via public transit in the planning 
of these facilities and transit networks. 

Both the transit-based and car-based optimization results suggest the 
application of a much more dispersed planning strategy for healthcare 
facilities to achieve equal accessibility. However, the transit-based 
optimal allocation of healthcare supply significantly differs from the 
car-based optimal allocation, with more healthcare resources allocated 
to facilities close to transit corridors. As a result, the traditional car- 
based MAE model might generate unequal healthcare accessibility for 
transit-dependent populations and thus lead to biased suggestions for 

Fig. 7. Distribution of optimal transit-based healthcare accessibility and newly increased supply in the increasing-Supply scenario.  
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healthcare planning. Moreover, due to its failure to consider diverse 
transport modes, traditional car-based optimization may engender a 
misallocation of the healthcare supply. Such misallocation tends to 
exacerbate inequalities in healthcare accessibility. Therefore, the 
transit-oriented allocation of healthcare supply can generate better 
overall equality of healthcare accessibility. 

Two optimization scenarios, i.e., the supply-reallocation and 
increasing-supply scenarios, were formulated in this study. The supply- 
reallocation scenario attempts to completely reallocate healthcare re-
sources among existing facilities. Although it is unrealistic to a certain 
extent, the supply-reallocation scenario still has important implications. 
The scenario represents the optimal allocation of resources that can 
theoretically generate maximal equality, which can act as a baseline for 
the evaluation of the equality of the actual allocation of resources. In 
contrast, the increasing-supply scenario does not aim to adjust the actual 
supply sizes of facilities; rather, it attempts to optimize the increased 
supply among existing facilities. This scenario is common in planning 
practice. These two scenarios can significantly improve the practical 
feasibility of the modified MAE model. 

In addition, a novel measurement of accessibility equality is formu-
lated in the MAE model, i.e., the WMAD of accessibility. Compared to 
the variance in accessibility used in previous studies [10–12], the 
WMAD is moderately sensitive to the disparity in accessibility. 
Furthermore, it has the same unit as accessibility, making it convenient 
to understand the magnitude of equality relative to mean accessibility. 
The results clearly show the performance of this equality measure. It 
generates similar measures of equality based on widely used measures, 
such as the GC and CV. 

Regarding the measurement and optimization of equality, the 
disparity in healthcare needs among different subgroups of the popu-
lation is important. In this study, our focus is on the disparity in 
healthcare accessibility, which is mainly caused by the disparity in ac-
cess to multiple transport modes among various populations. Therefore, 
people who are dependent on public transit and without access to pri-
vate cars should receive more attention in resource allocation. Although 
we do not have data on various age and income groups in the popula-
tion, it is feasible to distinguish populations with or without private cars 
(i.e., transit-dependent population) by splitting the total population 
based on mode shares. 

In summary, in this study, we highlight the necessity of incorporating 
public transit into the location-allocation analysis and planning of public 
facilities. Due to its low-carbon advantages and potential to alleviate 
traffic congestion, transit-oriented development has been advocated 
globally for decades. Accordingly, this study suggests the transit- 
oriented planning of healthcare facilities and other public facilities. In 
addition to housing, employment locations and commercial centers, 
public facilities shouldbe highlighted in transit-oriented development. 
Furthermore, we provide a useful analytic tool, i.e., the transit-based 
MAE model, for the planning of the equal transit-based accessibility of 
healthcare facilities. This study contributes to the literature by 
improving the innovative MAE model and incorporating transit-based 
accessibility into location-allocation modeling. The proposed model 
can be applied in other contexts and for other types of public facilities to 
support the equality-oriented planning of public facilities. 

We acknowledge that there are still some limitations to this study. 
First, transit-based accessibility and car-based accessibility were 
considered in the MAE model separately and then compared to examine 
the difference. Future studies should make further efforts to simulta-
neously optimize the equality of accessibility by multiple modes. There 
is an urgent need to measure healthcare accessibility by two modes and 
to try to narrow the accessibility gap between the two modes. Specif-
ically, the multimodal 2SFCA method can be applied to measure 
accessibility by multiple modes [15,16]. To achieve this goal, detailed 
data on the proportions of car-based and public transit-based travelers at 
each demand node are needed, which are not available in this study. 
Second, we only considered the optimization of supply allocation among 

fixed facility locations. Future studies can improve the model by 
considering location optimization or combining the two approaches. In 
this regard, existing studies [12,13] have made pioneering contribu-
tions. Third, although we introduced a novel measure of equality into 
the objective function of the MAE model, the performance of other 
possible measures such as the GC and maximal deviation in the objective 
function remains untested. Fourth, only travel time on the way to the 
hospital is considered in this study. In fact, queuing time after arriving at 
the hospital is also important for healthcare accessibility, and it should 
be considered in future studies if data are available. Fifth, future studies 
should pay more attention to analyzing the disparity in healthcare needs 
among subgroups with different socioeconomic conditions, as such 
research can deepen our understanding of healthcare equality or 
inequality. Sixth, the welfare analysis is relatively simplified. In the 
future, we will strive to develop an optimization model that maximizes 
social welfare by combining the equality of healthcare accessibility and 
better measurements of efficiency and cost. 
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