
3.73.9

Land	System	Simulation	of
Ruoergai	Plateau	by
Integrating	MaxEnt	and
Boltzmann	Entropy	into
CLUMondo

Ziyun	Sun,	Yuqi	Wang,	Juru	Lin	and	Peichao	Gao

Article

https://doi.org/10.3390/land12071450

https://www.mdpi.com/journal/land
https://www.scopus.com/sourceid/21100811521
https://www.mdpi.com/journal/land/stats
https://www.mdpi.com/
https://doi.org/10.3390/land12071450


Citation: Sun, Z.; Wang, Y.; Lin, J.;

Gao, P. Land System Simulation of

Ruoergai Plateau by Integrating

MaxEnt and Boltzmann Entropy into

CLUMondo. Land 2023, 12, 1450.

https://doi.org/10.3390/

land12071450

Academic Editors: Alexandru-Ionuţ
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Abstract: In the context of global change, land cover change is significantly influenced by human

activities. However, there is limited knowledge about the potential economic and ecological benefits

that land cover change on the Ruoergai Plateau will bring by 2035, considering the existing develop-

ment plans. In our study, the CLUMondo model was improved by integrating the MaxEnt model

and Boltzmann entropy and used to predict the structure and intensity of land change in China’s

Ruoergai Plateau. The results show that the model integrated with MaxEnt and Boltzmann entropy

is the most accurate in four contrasting experiments that have a Kappa of 0.773. The predicted results

show that with the increase in the demand for ecological benefits, the total area of the water area

shows a clear increasing trend. With 0.25% GDP growth, the water area is about 178 km2. With

2.5% GEP growth, the water area is about 202 km2. The latter is 24 km2 more than the former, an

increase of about 13.6%. With the increase in the demand for economic benefits, the total area of

construction land shows a clear increasing trend. Grassland, forest, and cropland are partly converted

into construction land, because of the higher economic benefits of construction land. At the same time,

the density of construction land will increase. With 12.6% GDP growth, the high-density construction

area is about 399 km2. With 126.1% GEP growth, the water area is about 761 km2. High-density

construction land increased by 90.7% (about 362 km2). In the low elevation area near the mountains

of Ruoergai County, a new concentration of construction land will appear. The simulation results are

of great significance for guiding ecological protection and urban construction in Ruoergai.

Keywords: MaxEnt; Boltzmann entropy; land use intensity; CLUMondo; ecological benefits;

economic benefits

1. Introduction

The study of land use and land cover (LULC) change is of great significance for
studying global climate and environment change [1–4]. LULC has two different terms
that are often used interchangeably [5]. “Land cover” refers to the biophysical characteris-
tics of the Earth’s surface, including the distribution of vegetation, water, soil and other
physical features of the land [6–8]. On the other hand, “land use” refers to how humans
use land and its habitat, often emphasizing its functional role in economic activities [6,7].
Land use and land cover change (LUCC) is the transformation of different land use types
resulting from complex interactions between humans and the natural environment [9].
Global environmental changes such as global climate change [10–12], carbon stocks and
fluxes [13–16], ecological service values [11,17] and biodiversity loss [4,18,19] have been
strongly associated with LUCC in past studies. Driven by urban and agricultural expansion,
unsustainable land use has a significant impact on climate and leads to ecosystem and
environmental degradation [20]. For example, the research conducted by Wu et al. on the
Mongolian plateau suggests that population growth and excessive grazing are important
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factors leading to the decline of grassland resilience [21]. Furthermore, LUCC is closely
linked to sustainable socio-economic development [22]. Development and utilization by
human beings is the leading cause of the change in the surface of the earth, especially the
land surface [23–25]. The purpose of land conversion is to obtain more land resources to
meet the diverse human needs in the development process [26]. However, land resources
are limited and unreasonable land conversion to meet human needs directly affects ecologi-
cal environment, biodiversity, etc. The environmental risks and resource scarcity caused by
such conversion have forced people to think about and pay attention to land change for
their own survival and development [27]. Therefore, for land to be fully and rationally used
while meeting human needs, the future transformation of land requires policy planning
and guidance.

The LUCC model is an important tool for understanding the LUCC process and its
drivers, predicting trends in LUCC and supporting decision-making in LUCC [2,28,29].
During the research phase of the land use/land cover process from 1990 to 2004, LUCC mod-
els were developed mainly in the non-spatial, spatial and integrated model categories [2].
Non-spatial models mainly quantify the rate and amount of LULC, such as Markov [30]
and System Dynamics (SD) [31]. Space models mainly express spatial patterns of LULC,
such as the Agent-based Model (ABM) [32,33] with different levels of land use subjects
as basic simulation units and Cellular Automata (CA) [34] with different resolution land
units as basic simulation units. Integrated models are multi-scale simulations of integrated
non-spatial and spatial models, some of which prioritize spatial characteristics over other
factors, such as SAMBA [35]. Some models, such as CLUE (Land use conversion and
its effects) [36,37], consider quantitative traits before spatial ones. Scholars have widely
used the CLUE series model to establish the empirical relationship between land and land
diversions by logistic regression. This study utilized the CLUMondo model, which is the
latest addition to the CLUE series of models.

The CLUMondo model is a LUCC model proposed by van Asselen and Verburg
in 2013 for large-scale areas [38]. CLUMondo can simulate land change with many-to-
many demand–supply relationships [39]. It allows for multiple land systems services
provided by one land type and provides a more realistic portrayal of the relationship
between land types and land system services. For now, CLUMondo has been widely
used. Kakouei et al.’s projections of phytoplankton and cyanobacteria abundance in 29 key
basins and 1567 key area lakes worldwide in the mid-2000s were based on three land
use scenarios (sustainability, middle of the road, and regional rivalry) and two climate
scenarios (RCP 2.6 and 8.5) [40]. Malek et al. have predicted future changes in land systems
in the Mediterranean based on future development scenarios for two future scenarios with
different land, water and biodiversity management transitions [41]. A comprehensive
model of urban-rural development in Henan, China has been developed by Gao et al.,
taking into account land use types and intensities, under 18 combinations of population
growth and food production scenarios [42].

However, there are possible improvements to be made in the CLUMondo model
and its applications, such as the regression and the drivers. The default regression in the
CLUMondo model is logistic regression, but the simulation accuracy of logistic regression
is limited. Zhang et al. discovered that compared to a Logistic-CA model, the Maxent-CA
model can achieve higher simulation accuracy [43]. Zhang et al. also proved that the
Maxent-CA model can intuitively reflect the driving mechanism and accurately simulate
urban expansion in specific cities [44]. Another improvement is the drivers used to obtain
land suitability. In most applied studies of the CLUMondo model, spatial heterogeneity
within the grid unit was not taken into account as a driver. Spatial heterogeneity is the
spatial heterogeneity and complexity of ecological processes and patterns, and high spatial
heterogeneity means more diverse niche habitats that allow more species to coexist. Space
heterogeneity can be calculated by Boltzmann entropy [45]. Entropy has been applied to
the spatial, time and space-time dimensions of landscape ecological research, explaining
the spatial heterogeneity, the unpredictability and the pattern scale dependence of the
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pattern [46]. However, there are few studies on the use of entropy in land use. In summary,
we want to know whether CLUMondo integrated with Maxent and Boltzmann entropy
can improve the accuracy of simulation predictions.

The Ruoergai Plateau is located in southwest China, an important water conservation
ecological function and biodiversity protection area in the upper reaches of the Yellow River.
It is known as “the kidney of the plateau” [47] and receives excellent attention in ecological
protection. For ecological protection, in 2022 the Ministry of Finance issued an advance
budget of 800 million RMB for Aba Prefecture’s critical ecological protection, restoration
and management funds for 2023, which will be used for the integrated protection and
restoration of grasslands, forests, lakes and sand in the wetlands of Ruoergai grasslands in
the upper reaches of the Yellow River in Sichuan Province [47]. In the aspect of economic
development, the Aba Prefecture People’s Government has issued the Fourteenth Five-
Year Plan for the National Economic and Social Development of the Aba Tibetan and
Qiang Autonomous Prefecture and the Outline of Vision Goals for the Year 2035 [48],
and the Fourteenth Five-Year Plan for the National Economic and Social Development
of the Gannan Tibetan Autonomous Prefecture and the Outline of Vision Goals for the
Year 2035 [49]. According to the Planning Framework, the Gannan region’s GDP is expected
to grow at an average annual rate of 6 percent during the 14th five-year period (2020–2025)
and 6.5 percent during the Aba region’s 14th five-year period (2020–2025). At this rate of
growth, Ruoergai’s GDP will grow by about 126.1% by 2035. How can economic benefits
be taken into account in balancing ecological benefits? What adjustments are needed to the
spatial distribution of the land system on the Ruoergai Plateau under the 2035 objectives of
the Planning Framework? These are all things we need to take into account in developing
spatial planning policies for the country. In this trade-off, demand includes both economic
and ecological benefits, with different types of land suppling the demand, so this is a
many-to-many demand–supply relationship that CLUMondo models can address.

In this study, we have two particular research questions. First, how can the Ruoergai
Plateau’s land change achieve economic and ecological benefits in 2035? We will set up
a series of ecological and economic goals to explore how land use and land cover will
change in different situations. Second, does CLUMondo integrating MaxEnt and Boltzmann
entropy improve the accuracy of the original model? We will compare improved model and
unimproved models to illustrate the effectiveness of our improved model, which includes
our main innovations.

2. Study Area and Data

2.1. Study Area

The Ruoergai Plateau, at coordinates 33◦10′~34◦06′ N, 101◦36′~103◦25′ E in the north-
eastern region of the Qinghai-Tibet Plateau, encompasses a vast land area measuring
3.0834 × 106 km2, characterized by an altitude ranging from approximately 2367 m to
5017 m. Its geographic coverage spans five counties, namely Ruoergai County, Aba
County, and Hongyuan County in Aba Tibetan and Qiang Autonomous Prefecture, Sichuan
Province, as well as Maqu County and Luqu County in Gannan Tibetan Autonomous
Prefecture, Gansu Province (Figure 1). As the largest highland marsh in the world, the
Ruoergai Plateau is an important water source conservation area and biodiversity protec-
tion site in the upper reaches of the Yellow River in China [50]. In general, the geological
characteristics of the Ruoergai Plateau show a broad plain and hill landform. Lakes and
rivers are distributed across this plateau, and the grassland landscape is unique. At the
same time, it is also affected by the tectonic activities of the earth. The main features include
plateau terrain, lakes and rivers, grassland landscape, geological structure and so on. The
terrain of the Ruoergai Plateau is relatively flat, showing a gentle hilly topography as
a whole. However, some mountains and peaks also exist on the plateau, such as Song-
pan Ganzi Mountain Range, Dayi Mountain, etc. There are many lakes and rivers in the
Ruoergai Plateau. Famous lakes include Namtso and Chaka Salt Lake, while the Yellow
River, Yangtze River and Lancang River all originate in this area and flow from here to
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form the Yellow River, one of the three major rivers in China. The Ruoergai Plateau is
famous for its vast grasslands. The grassland here is vast and verdant, and it is one of the
important pastoral areas in China. The grassland is rich in alpine vegetation, such as alpine
meadows and wildflowers. The Ruoergai Plateau is located on the northeast margin of the
Qinghai-Tibet Plateau, which is the transition zone between the Qinghai-Tibet Plateau and
the Sichuan Basin. This area is affected by plate movement and crustal tectonic activities,
and there are geological structural phenomena such as faults and folds.

tz

ff

tt

ff
ff

Figure 1. Location and extent of the study area in Ruoergai Plateau.

These geological features give the Ruoergai Plateau a unique natural landscape and
make it an important ecological environment. In addition, the Ruoergai Plateau has hypoxia,
low temperatures and low pH conditions, which make the Ruoergai Plateau quite sensitive
to climate change. However, little is known about how land cover change in Ruoergai
may change due to climate change or under the established vision development goals.
Therefore, this study aims to investigate how different ecological benefit development goals
and economic development goals affect the change of land use and land cover in Ruoergai,
as well as to define some ecological reserves and economic development areas.

2.2. Data

2.2.1. Land Use/Cover Type Data

In this study, a global land cover map with a high spatial resolution of 10 m was
derived from Sentinel-2 satellite data acquired from the Esri Releases New 2020 Global
Land Cover Map [51]. The original class definitions are Water, Trees, Flooded vegetation,
Crops, Built area, Bare ground, Snow/Ice, Clouds and Rangeland. Flooded vegetation
and Rangeland were merged into Grassland. Bare ground, Snow/Ice and Clouds were
merged into Unutilized Land. Utilizing the dataset as a foundation, the land use types
were subsequently reclassified into six distinct categories: Cropland, Forest, Grassland,
Water, Construction Land, and Unutilized Land. To facilitate further analysis, the data were
resampled to generate raster datasets with resolutions of 100 m and 1 km specifically for
the Ruoergai Plateau region.
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2.2.2. Land Use/Cover Intensity Data

The proportion of area of land use/cover types in the image element characterizes
land use intensity in this study. We produced a land system considering land use intensity
based on two different resolutions of land use/cover type data (100 m and 1 km) (Figure 2).
This land system can reflect land use/cover types and different land use intensities. For
example, we first calculated the proportion of cropland pixels at 100 m resolution in the
1 km cropland pixel. Then we used the natural breakpoint method to divide the cropland at
1 km resolution into high-density and low-density cropland. Above the natural breakpoint
division line is high-density and below it is low-density, as shown in Figure 3.

 
(a) (b) 

tt

Figure 2. The land use/cover types and land use intensity data. (a) Six land use types distribution

map of the Ruoergai Plateau. The results obtained are reliable because we have compared them with

the land data from the Resource and Environment Science and Data Center [52] (b) Twelve land use

intensity types of the Ruoergai Plateau. All the data have a 1 km resolution. The latter is divided by

the natural breakpoint method based on the former.

tt

Figure 3. The production schematic diagram of compact cropland and scattered cropland.
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2.2.3. Driving Factors

The driving factors of land change were selected according to two criteria: representa-
tivity and diversity, and data availability. As a result, we chose 18 driving factors, including
4 socio-economic and 13 natural-environmental driving factors, as seen in Table 1 and
Figure 4. All driving factors were treated at a uniform spatial resolution of 1 km.

Table 1. Names and sources of driving factors of land use change.

Category Name Abbreviations Data Sources/Links

Socio-economic
driving factors

Distance from traffic roads traffic
Calculated using Open Street Map
(https://www.openstreetmap.org (accessed on
24 May 2023))

Gross Domestic Product gdp
Global 1 km × 1 km gridded revised real gross
domestic product and electricity consumption during
1992–2019 based on calibrated nighttime light data [53]

Nightlight data nightlight
EOG Nighttime Light
(Index of/nighttime_light/annual/v20 (mines.edu))

Population density data pop

Google Earth Engine Datasets
(https://developers.google.com/earth-engine/datas
ets/catalog/WorldPop_GP_100m_pop (accessed on
24 May 2023))

Natural-
environmental
driving factors

Digital Elevation Model dem
Resource and Environmental Science and Data Center
(https://www.resdc.cn/DOI/DOI.aspx?DOIID=123
(accessed on 24 May 2023))

Slope slope
Calculated based on the DEM

Slope aspect aspect

Normalized Difference
Vegetation Index

ndvi
Resource and Environmental Science and Data Center
(https://www.resdc.cn/data.aspx?DATAID=257
(accessed on 24 May 2023))

Net primary productivity npp
GLASS product
(Index of/NPP/AVHRR/GLASS_NPP_005D_YEAR/
2015 (umd.edu))

The proportion of silt in soil soilsilt
Resource and Environmental Science and Data Center
(https://www.resdc.cn/data.aspx?DATAID=260
(accessed on 24 May 2023))

The proportion of clay in soil soilclay

The proportion of sand in soil soilsand

Cropland production
potential

pcrop

Dataset of cropland production potential in China,
Resource and Environmental Science Data Center
(http://www.resdc.cn/DOI (accessed on
24 May 2023)) [54]

Average annual precipitation Pre 1 km monthly temperature and precipitation dataset
for China from 1901 to 2017 [55]Average annual temperature tmp

Soil organic matter content organic
SoilGrids250m 2.0 (https://soilgrids.org/ (accessed
on 24 May 2023))

Soil moisture soilmoisture
A fine-resolution soil moisture dataset for China in
2002~2018 [56]

https://www.openstreetmap.org
https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop
https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop
https://www.resdc.cn/DOI/DOI.aspx?DOIID=123
https://www.resdc.cn/data.aspx?DATAID=257
https://www.resdc.cn/data.aspx?DATAID=260
http://www.resdc.cn/DOI
https://soilgrids.org/
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Figure 4. The driving factors.

3. New Method, Evaluation, and Application

3.1. Improved CLUMondo with MaxEnt and Boltzmann Entropy

3.1.1. Overall Framework

In this study, we improve upon the CLUMondo land change model by integrating the
MaxEnt model and Boltzmann entropy:

(1) For the regression’s accuracy, we use the MaxEnt model to replace the logistic regres-
sion built into the CLUMondo model to improve the regression’s accuracy.

(2) For spatial heterogeneity, we computed Boltzmann entropy based on DEM data as an
additional driver factor of spatial heterogeneity.

This study also considered land use intensity and proposed a novel integrated land
use simulation model. Figure 5 shows the overall framework of the integrated model.
Figure 6 shows the main work of this study.

tz

tz
 

 tz

Figure 5. The overall framework of the integrated model (modified from reference [57]).
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ff

Figure 6. The main work of this study.

3.1.2. CLUMondo Model

The CLUMondo model was developed by van Asselen and Verburg [38] based on
CLUE (conversion of land use and its effects). The model consists of both demand and
distribution modules.

The user inputs data on the current spatial distribution of the land system and future
land demand. Under some internal mechanisms, the model iterates, configures and updates
the spatial distribution data of the land system that are input by the user. The result is an
expected spatial distribution of the land system that meets the user’s future demand.

CLUMondo is essentially an empirical demand-side statistical model. The imbalance
between “supply” and “demand” motivates land transformation in the simulation pro-
cess. The interpretation is that there is an imbalance between the supply provided by
the current land system and the demand set by the users. If the bid-ask spread exceeds
a certain threshold, the demand will cause the land to change until the equilibrium be-
tween supply and demand is reached, and the iteration stops. The model is based on the
discrete-time step method, which considers space policy constraints, specific parameters
of land use conversion, land use needs, and driver location characteristics to allocate land
use optimally [38].
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3.1.3. MaxEnt Model

Jaynes first proposed the MaxEnt principle based on Shannon’s notion of information
entropy [58]. Phillips et al. proposed the MaxEnt model (MaxEnt) based on the principle
of maximum information entropy and developed a software package for the MaxEnt
model (MaxEnt 3.4) [59]. The central idea of the MaxEnt principle is that in estimating the
posterior probability distribution from the prior probability information, we assume that
the unknown information conforms to a uniform distribution. In this way, the conditional
entropy of the system is maximized while the constraints are satisfied, i.e., the probability
distribution of the system in the most durable case.

This paper calculated the probability distributions of various land types using the Max-
Ent model with 18 drivers of land use change, such as DEM, average annual precipitation,
and population density data as constraints.

H(Y|X) = −
n

∑
i=1

P(xi)
m

∑
j=1

P(yj

∣

∣

∣
xi) log P(yj|xi) (1)

where Y is the set of land use types, yi is each of the land use types, X is the set of driving
factors, and xi is each of the driving factors.

The output of the MaxEnt model is the probability distribution of the different types
of land use. We used the output probability file from the MaxEnt model instead of the
probability file generated by the logistic regression built into the CLUMondo model.

3.1.4. Boltzmann Entropy

The driving factors used in previous studies applying the CLUMondo model seldom
consider spatial heterogeneity within the pixels. In the study of complexity geography, the
Boltzmann entropy of landscape gradients can be calculated to characterize spatial hetero-
geneity [46]. The Boltzmann entropy is chosen for two reasons. Firstly, it is theoretically
able to characterize the constituent and configurational disorder of a system, whereas Shan-
non entropy can characterize only one of these at a time. In this sense, Boltzmann entropy
is more suitable for landscape representation, where both composition and configuration
are important. Second, Boltzmann entropy is thermodynamic entropy, which is key to
explaining landscape ecological processes based on thermodynamic insights [46].

In this paper, we calculated the Boltzmann entropy of the DEM raster data. It is used
to characterize spatial heterogeneity within raster data. We use the Boltzmann entropy
driver as complementary to the CLUMondo model.

The Boltzmann entropy equation can be simplified by the following Equation (2):

S = kB log(W) (2)

where S is the Boltzmann entropy of the system; W is the number of microstates corre-
sponding to the microstate; and kB is the Boltzmann constant, which takes the value of
1.3807 × 10−23 J/K.

The method for computing the Boltzmann entropy of a landscape gradient was initially
proposed by Gao et al. [60]. The method establishes the connection between macroscopic
and microscopic states through scale transformation. Figure 7 illustrates the core idea of
calculating Boltzmann entropy for quantitative spatial raster data. This method uses a 2 × 2
sliding window to compute the raster data. For each calculation, we derive the macroscopic
(maximum, minimum, average, or sum) parameters for each window and the number of
microstates corresponding to the case in which macroscopic parameters are constrained.
The Boltzmann entropy of all raster data is computed by adding the number of microstates
obtained from each sliding window in Equation (2). The strategy and improvement points
of our coupling model can also be shown in Figure 6.
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Figure 7. The core idea of calculating Boltzmann entropy for quantitative spatial raster data (modified

from reference [60]).

We use two different resolutions of DEM data (1 km and 12.5 km) and the method
proposed by Gao et al. [46] to compute the Boltzmann entropy driving factor with a
resolution of 1 km. The steps of computation are as follows, which are also illustrated in
the “Coupling the Boltzmann Entropy” part in Figure 6.

Step 1: Splitting the Raster

Each 1 km pixel contains 80 × 80 12.5 m pixels. We calculated the Boltzmann entropy
once for each 80 × 80 12.5 m pixels to represent the spatial heterogeneity of its correspond-
ing 1 km pixel. ArcGIS is used to partition the 12.5 m raster data based on the 1 km pixel
boundaries. We then obtain matrixes of 80 × 80 12.5 m pixels within each 1 km pixel.

Step 2: Cyclic Calculation

We used C# to compute the Boltzmann entropy of all 80 × 80 12.5 m DEM data in
a cyclic manner, and then wrote the results in the Boltzmann entropy calculation result
matrix. Finally, we obtained the Ruoergai Plateau’s total Boltzmann entropy driving factor
with 1 km resolution, as shown in Figure 8.

tz

ff
tz

tz

tz

tz
tz

tz

tz
tz

Figure 8. The Boltzmann entropy results were calculated by DEM on the Ruoergai Plateau. The

higher the value, the greater the Botzmann entropy of the pixel, the greater the heterogeneity of space.

3.2. Evaluation

To evaluate the accuracy of the integrated model, we used the land system in 2017 to
predict the land system in 2021. We took the prediction results and compared them with
the existing land system in 2021. Table 2 and Figure 9 show the results of model evaluation.
In the four models, the model integrated MaxEnt and Boltzmann entropy to achieve the
highest accuracy, with a Kappa of close to 0.8.
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Table 2. Accuracy evaluation results. The Kappa statistic results from two types of similarity:

similarity of quantity and similarity of location. Here quantity refers to the total number of cells

taken in by each category found in the legend (in other words: the histogram) and location refers

to the spatial distribution of the different categories on the map. Kappa = KHisto → KLoc. KHisto

only depends on the total number of cells taken in by each category, and KLoc strictly depends on

the spatial distribution of the categories on the map. The Fraction correct statistic is calculated as the

number of equal cells divided by the total number of cells.

Experimental Setup Kappa Fraction Correct KLocation KHistogram

MaxEnt and Boltzmann entropy 0.773 0.952 0.814 0.950
Only Boltzmann entropy 0.580 0.929 0.888 0.654
Only MaxEnt 0.766 0.951 0.816 0.938
Original model 0.627 0.937 0.989 0.634

tz

ff →

tz
tz

  
(a) (b) 

 

(c) (d) 

tz
tz

Figure 9. Four sets of contrasting experiments were used to predict the 2021 land system based

on 2017 data. (a) The model is integrated with MaxEnt and Boltzmann entropy. (b) The model is

integrated with Boltzmann entropy. (c) The model is integrated with MaxEnt. (d) The original model.

3.3. Application

Next, we applied the improved CLUMondo model to future land system predictions
on the Ruoergai Plateau. This study calculated the ecological and economic benefits of each
type of land per unit area. Secondly, we set nine scenarios for the future development of the
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Ruoergai Plateau, with different ecological and economic benefit demands. The necessary
parameter settings for the model iteration were also set.

3.3.1. Benefit Coefficients Calculation

In this study, the improved CLUMondo model was used to project the land use status
of the study area in 2035, considering the different economic and ecological benefit growth
needs. To quantitatively measure the growth of economic (GDP) and ecological benefits
(GEP), the coefficient of ecological benefits (E) and the coefficient of economic benefits (D)
were calculated in this paper:

GDP =
n

∑
i=1

Di (3)

GEP =
n

∑
i=1

Ei (4)

where i represents the different land use types. The land use intensity was also considered,
and the ecological and economic efficiency coefficients were calculated to consider the
intensity of the land use.

• Ecological efficiency coefficient (E)

The computation of the ecological efficiency coefficient is grounded in a theoretical
examination of national-scale ecosystem service valuation. Table 3 of the Ecological Service
Value Equivalents per Unit Area of Terrestrial Ecosystems in China [61] is the primary
reference in this calculation. In addition, we also refer to the area of land use types at the
municipal scale for the statistics of Gansu and Sichuan provinces.

Table 3. Table of ecological service value equivalents per unit area of terrestrial ecosystems in China.

Ecological Services Forest Grassland Cropland Wetland Water Desert

Gas Regulation 3.50 0.80 0.50 1.80 0.00 0.00
Climate Regulation 2.70 0.90 0.89 17.10 0.46 0.00
Water Harvesting 3.20 0.80 0.60 15.50 20.38 0.03

Soil Formation and Protection 3.90 1.95 1.46 1.71 0.01 0.02
Waste Treatment 1.31 1.31 1.64 18.18 18.18 0.01

Biodiversity Conservation 3.26 1.09 0.71 2.50 2.49 0.34
Food Production 0.10 0.30 1.00 0.30 0.10 0.01

Raw Materials 2.60 0.05 0.10 0.07 0.01 0.00
Recreation and Culture 1.28 0.04 0.01 5.55 4.34 0.01

Total 21.85 7.24 6.91 62.71 45.97 0.42

When calculating the ecological efficiency factor, the economic value of annual natural
food production on 1 hectare of cropland with the national average yield is defined as 1. The
economic value of food production services provided by cropland ecosystems is equivalent
to 1/7 of the market value of the national average food yield. The value equivalent factor
of ecological services in other ecosystems is determined based on the contribution of each
ecological service in comparison to the food production services of cropland [61]. This
calculation can be expressed as follows:

Step 1: Calculate the economic value of food production services Ea provided per unit
of agroecosystem:

Ea =
1

7

n

∑
i=1

pQi

M
(5)

where M is the sum of sown area of food crops in five counties (km2), P is the price of
grain (RMB/t), Qi is the grain production of a particular county (t), and Ea is the sum of
the economic value of five counties (million RMB), combined with the statistical bulletin of
national economic and social development of Ruoergai counties in 2021.

Ea is calculated in Table 4, which is 56,626 RMB/km2.
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Table 4. Area of Cropland for grain crops, grain price (in RMB per ton), economic value (in ten

thousand RMB per square kilometer).

County Grain Production (t) Grain Area (km2)

Ruoergai 5987.56 22.45
Hongyuan 205.26 1.30

Aba 6388.10 40.46
Magu 12,488.19 79.09
Luqu 3070.00 15.12

Total Area 28,139.12 158.42

Step 2: Calculate the ecological efficiency coefficient Ei:

Ei = Ea × ki (6)

The ecological service value per unit area, denoted as ki, is crucial in the calculation.
For instance, Table 3 provides the ecological service value per unit area of cropland as 6.91.
By multiplying this value with the economic value of food production services, which
is 56,626 RMB/km2 from Step 1, the ecological efficiency coefficient of cropland can be
determined as 391,288 RMB/km2, as indicated in Table 5.

Table 5. Economic and ecological efficiency coefficients for each land use type on the Ruoergai Plateau.

Land Use Type Cropland Forest Grassland Water Construction Land Unutilized Land

Economic benefit
coefficient (RMB/km2)

1,814,700 9900 91,300 6900 24,061,600 0

Ecological efficiency
coefficient (RMB/km2)

391,288 1,237,286 409,975 3,077,028 0 0

• Economic Benefit Coefficient (D)

The economic coefficient was obtained by calculating the GDP generated from different
land use types, as reported in the Statistical Yearbook of Sichuan Province for 2021, to the
corresponding areas of each land use type (Table 6).

Table 6. GDP (generated from different land use types), area (km2), and Economic Benefit Coefficient

(in ten thousand RMB per square kilometer).

Land Use Type Cropland Forest Grassland Water Construction Land Unutilized Land

Corresponding Industries Agriculture Forestry
Animal

Husbandry
Fishery Other Industries None

Ruoergai 3674.00 358.00 119,483.00 180.00 63,850.00 0.00
Hongyuan 3371.14 815.64 85,137.74 0.00 41,301.48 0.00

Aba 6337.00 259.00 46,993.00 0.00 59,665.00 0.00
Magu 12,388.30 506.32 61,495.78 0.00 147,009.60 0.00
Luqu 8352.52 341.38 45,696.42 0.00 94,883.43 0.00

Entire study area 34,122.96 2280.34 358,805.94 180.00 406,709.51 0.00
Area 188 2314 39,287 262 169 530

Economic Benefit coefficient 181.47 0.99 9.13 0.69 2406.16 0.00

• Calculation results in the economic benefit coefficient and ecological benefit coefficient

The results of the calculation of the economic and ecological efficiency coefficients for
each land type on the Ruoergai Plateau are shown in Table 5.

Among them, construction land is a manufactured surface. It does not exist as a type
of ecosystem services, so it is considered that construction land is incapable of providing
ecosystem services. There is no value of ecosystem services, so the coefficient of ecological
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efficiency of construction land is set to 0. Unutilized land refers to land that cannot be
developed and used by humans. There is no economic benefit or value of ecosystem
services. Hence, the coefficients of economic and ecological benefits of unutilized land
are both 0.

• Ecological benefit and economic benefit coefficients that take into account land
use intensity

Considering the intensity of land use, it is necessary to characterize land’s ecological
and economic benefits based on the actual percentage of land use/cover types in the
image element:

GEPI = ∑
i

Ei × areai (7)

GDPI = ∑
i

Di × areai (8)

where GEPI is the ecological efficiency coefficient of a particular land use/cover type, GDPI

is the economic efficiency coefficient of a particular land use/cover type; areai is the actual
share of that land use/cover type; GEPI is the modified ecological efficiency coefficient,
and GDPI is the modified economic efficiency coefficient. The results are shown in Table 7.

Table 7. Area (km2), economic and ecological efficiency coefficients for each land use type taking into

account land use intensity (RMB/km2).

Land Type Economic Benefit Coefficient Ecological Efficiency Coefficient Area in 2021

Low-density Cropland 326,700 70,429 58
High-density Cropland 1,270,300 273,900 139

Low-density Forest 1300 160,843 462
High-density Forest 6100 767,100 1851

Low-density Grassland 33,800 151,686 1571
High-density Grassland 81,300 364,871 37,716

Low-density Water 700 307,700 94
High-density Water 3800 1,723,129 166

Low-density Construction Land 2,646,800 0 54
High-density Construction Land 12,993,300 0 115

The product of the benefit coefficient of each type of land use and the area of each type
of land is the ecological benefit of that type of land use. The ecological benefit in 2021 is
11,095,795 RMB, and the economic benefit is 4,963,351 RMB.

3.3.2. Future Scenarios Settings

This study establishes three GDP growth scenarios (12.6%, 63.0%, 126.1%) and three
GEP growth scenarios (0.3%, 1.3%, 2.5%). By combining these scenarios, a total of nine
demand scenarios are generated, as shown in Table 8.

Regarding economic benefit growth, we referenced the 14th Five-Year Plan (2020–2025)
issued by Aba Prefecture and Gannan Prefecture governments. According to the plan,
the expected annual GDP growth rate for Gannan Prefecture is 6%, while Aba Prefecture
has a GDP annual growth rate of 6.5%. Based on a calculated GDP annual growth rate
of 6%, the projected GDP increase in 2035 compared to 2021 is estimated to be 126.1%. If
the plan is 50% achieved, the increase would be 63.0%; if it is 10% achieved, the increase
would be 12.6%.

Regarding ecological benefit growth, we calculated the average annual GEP growth
rate based on the land system in 2017 and the existing land system in 2021, which is
determined to be 0.2%. Assuming this growth rate continues, the projected GEP increase
in 2035 compared to 2021 would be 2.50%. If the target is 50% achieved, the increase would
be 1.25%; if it is 10% achieved, the increase would be 0.25%.
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Table 8. Scenarios setting for future land demand.

Scenarios GEP Growth (%) GDP Growth (%)

Scenario 1 0.25% 12.60%
Scenario 2 1.25% 12.60%
Scenario 3 2.50% 12.60%
Scenario 4 0.25% 63.00%
Scenario 5 1.25% 63.00%
Scenario 6 2.50% 63.00%
Scenario 7 0.25% 126.10%
Scenario 8 1.25% 126.10%
Scenario 9 2.50% 126.10%

3.3.3. Other Parameter Settings

In addition to the initial land system and projected land demand for the target year,
the input parameters of the CLUMondo model also include conversion resistance and a
transition matrix. The specific methods for setting the conversion resistance and transition
matrix in this study are as follows:

• Conversion Resistance

To calculate the conversion resistance values for each land use type, we initially
computed the confusion matrix for the land system in 2017 and 2021 using the land
use/cover intensity data of those respective years (Table 9; Figure 10). Subsequently, the
conversion resistance values for each land use type were determined by dividing the
number of unconverted rasters for a particular land use type by the total number of original
rasters corresponding to that land use type (as shown in Table 9).

Table 9. The confusion matrix for the land system in 2017 (Map 1) and 2021 (Map 2).

Map 2

Map 1
0 1 2 3 4 5 6 7 8 9 10 11 Sum Map 1

0 11 4 0 0 7 15 1 0 0 1 2 0 41
1 6 84 0 0 14 7 0 0 1 3 1 0 116
2 0 0 346 62 16 102 0 0 1 0 1 2 530
3 0 0 41 1670 65 14 1 0 2 0 0 0 1793
4 10 15 15 104 1188 257 3 10 8 9 7 66 1692
5 30 35 60 15 225 37,060 19 17 10 12 86 63 37,632
6 0 0 0 0 2 11 67 17 0 0 0 2 99
7 0 0 0 0 1 2 2 113 0 0 9 5 132
8 0 0 0 0 1 6 0 0 31 9 0 0 47
9 0 1 0 0 0 1 0 0 0 80 0 0 310

10 1 0 0 0 7 153 1 8 1 1 53 19 123
11 0 0 0 0 45 88 0 1 0 0 14 194 640

Sum Map 2 58 139 462 1851 1571 37,716 94 166 54 115 173 351 44,634

To present the results more clearly, we define low-density cropland, high-density
unutilized land and so on, as numbers 0 to 11, respectively.

The conversion resistance value, denoted as ri, for land system type i is given by:

ri = 1 − pi (9)

where pi represents the probability of land system type i in 2017 being converted to other
land system types in 2021. The results are shown in Table 10.
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.Figure 10. The confusion matrix between 2017 and 2021.

Table 10. The conversion resistance for each land type.

Land Type Codes 0 1 2 3 4 5 6 7 8 9 10 11

Conversion resistance 0.27 0.72 0.65 0.93 0.70 0.99 0.68 0.86 0.66 0.98 0.22 0.57

• Transfer Matrix

The land use type transfer matrix represents the degree of ease in converting one land
use type to another, with values ranging from 0 to 1. A value closer to 1 indicates a higher
likelihood of conversion to the specific land use type, while a value closer to 0 suggests a
lower likelihood.

In the setting of the transition matrix, a threshold of 0.1% is applied. If there has
been a historical conversion between two land use types, the corresponding entry in the
transition matrix is assigned a value of 1; otherwise, it is set to 0. Moreover, grassland
can be converted to construction land, while water bodies exhibit low potential for con-
version to forest or grassland. On the other hand, construction land is considered less
prone to conversion into other land use types, thus assigned a value of 0, signifying its
limited convertibility. The resulting transition matrix, outlined in Table 11, encapsulates
these considerations.



Land 2023, 12, 1450 17 of 27

Table 11. The transfer matrix for the land system in 2017 (Map 1) and 2021 (Map 2).

Land Type Codes 0 1 2 3 4 5 6 7 8 9 10 11

0 1 1 0 0 1 1 1 0 0 1 1 0
1 1 1 0 0 1 1 0 0 1 1 1 0
2 0 0 1 1 1 1 0 0 1 0 1 1
3 0 0 1 1 1 1 0 0 1 0 0 0
4 1 1 1 1 1 1 0 0 1 1 1 1
5 0 0 1 0 1 1 0 0 1 1 1 1
6 0 0 0 0 1 1 1 1 0 0 0 1
7 0 0 0 0 1 1 1 1 0 0 1 1
8 0 0 0 0 0 0 0 0 1 1 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0

10 1 0 0 0 1 1 1 1 1 1 1 1
11 0 0 0 0 1 1 0 1 0 0 1 1

4. Results

4.1. Land System Maps for Different Scenarios

The improved CLUMondo model was used to project the land use types in the Ruo-
ergai region in 2035. The results under nine future development scenarios (Table 8) are
shown in Figure 11 and Table 12.

 

ff

 
Figure 11. Predicted results of land use types under 9 scenarios. Subfigure (a–i) correspond to

scenarios 1–9, respectively.

Table 12. The occupancy area for the nine scenarios (km2).

Land Types

Scenarios
Origin 1 2 3 4 5 6 7 8 9

0 58 43 19 12 20 3 0 0 0 0
1 139 129 163 174 80 95 103 101 101 101
2 462 369 244 66 1 0 0 0 0 0
3 1851 1781 1827 1900 1591 1732 1790 1671 1667 1657
4 1571 1265 972 584 350 42 18 15 14 14
5 37,716 38,188 38,546 39,021 39,199 39,370 39,259 38,861 38,841 38,804
6 94 72 58 40 18 13 9 9 9 9
7 166 145 153 185 127 139 183 163 169 181
8 54 163 181 188 688 679 718 1231 1245 1279
9 115 139 132 128 227 228 220 250 255 256
10 173 130 129 126 123 123 124 123 123 123
11 351 326 326 326 326 326 326 326 326 326
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Two typical areas (in Figure 12) were selected: the central town area of Aba County
and the lower elevation forest in the eastern part of Ruoergai County, which are shown in
Figures 13 and 14.

ffi ffi

ffi ffi

Figure 12. Typical areas of land type and intensity distribution on the Ruoergai Plateau in 2021. The

areas in the two red boxes are the selected typical areas.
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Figure 13. Local area 1 ((a–i), in order, original 2021 scenario, scenarios 1–9).
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Figure 14. Local area 2 ((a–i), in order, original 2021 scenario, scenarios 1–9).

Comparing the subplots in Figure 12 horizontally, we can analyze the change in
land use intensity with the increase in the ecological efficiency target when the economic
efficiency is certain. Figure 13a–c present the change in land use intensity with increasing
ecological efficiency target when the economic efficiency target is low: low-density cropland
is converted to high-density cropland, and low-density grassland is converted to high-
density grassland, while the increase in economic efficiency (Figure 13d–f) results in more
conversion of cropland to urban land and conversion of low-density grassland to high-
density grassland. It is known from Figure 13g–i that the expansion of construction land
will reach saturation as economic efficiency objectives reach a certain level.

While vertically comparing the subplots in Figure 12, we can analyze the change of
land use intensity with the increase in the economic benefit target when the ecological
benefit is certain. Subplots Figure 13a–i show similar patterns of change: (1) in terms of
type change, cropland and grassland are converted to construction land, and towns show a
trend of expansion; (2) in terms of utilization intensity, low-density cropland is converted
to high-density cropland, low-density grassland and forest are converted to high-density
grassland, and low-density construction land is converted to high-density construction
land; (3) in terms of distribution location, there are new town points, indicating that this
area may be suitable for town development. In addition, Figure 13c,f,i show that there is a
lateral evolution of construction land from linear to faceted distribution as the economic
efficiency target increases.

A horizontal look at subplots Figure 14a–c shows that as the ecological efficiency
target increases there is a conversion of low-density forest to high-density forest and low-
density grassland to high-density grassland. And according to Figure 14d–f, it is known
that there is a more significant increase in forest area with the increase in the ecological
efficiency target.

Vertically, the change of land use with increasing economic efficiency targets are as
follows: (1) in terms of type, forest and grassland are converted to construction land, and
towns show expansion trend; (2) in terms of utilization intensity, low-density cropland is
converted to high-density cropland, low-density forest is converted to high-density forest,
and low-density grassland is converted to high-density grassland.

Overall, Figures 13 and 14 show that: (1) with the increase in demand for ecological
benefits, there is little change in land use types. But regarding utilization intensity, land
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use intensity shows an apparent increasing trend. For example, low-density cropland is
transformed into high-density cropland, low-density grassland is transformed into high-
density grassland, low-density forest is transformed into high-density forest, etc.; (2) with
the increase in demand for economic benefits, the area of construction land significantly
increases in terms of land use type, while the area of cropland decreases. In terms of
intensity, the intensity of utilization of construction land, unutilized land, forest, and
grassland all increase significantly. Regarding spatial distribution, the construction land
area expands toward the plain area in the central part of Ruoergai County.

4.2. Analysis of Land System Type Transitions

The areas of land use types on the Ruoergai Plateau in 2035 under different scenarios
in Figure 11 were measured and plotted in Figures 15 and 16.

tt

ff
tt

ffFigure 15. Summary of 2035 area for various land use types under different scenarios.

By Figures 15 and 16 it can be seen that when the demand for economic benefits
is the same (scenarios 1, 2, 3; scenarios 4, 5, 6; scenarios 7, 8, 9), the total area of water
shows an apparent increasing trend in terms of the change of land use type as the demand
for ecological benefits increases, and grassland and cropland are partially transformed
into water. Although the total area of cropland, forest, construction land, and grassland
fluctuates, the intensity of land use shows an increasing trend in terms of land use intensity,
i.e., from low-density cropland to high-density cropland and low-density grassland to
high-density grassland, and the degree of land use intensification increases significantly.
The unutilized land is more difficult to develop due to severe natural conditions and other
restrictions, and the overall change in area is minimal.

With the same demand for ecological benefits (scenarios 1, 4, 7; scenarios 2, 5, 8;
scenarios 3, 6, 9), the total area of construction land shows a noticeable trend of increase in
terms of changes in land use/cover types as the demand for economic benefits increases,
and grassland, forest, and cropland are partially converted into construction land, which is
consistent with the higher economic benefits of construction land. The prediction results
show that with the increase in economic benefit demand, the construction land is expands
primarily around the original towns and cities, and new construction land gathering
areas appear in the lower elevation areas near the mountains of Ruoergai, which is of
great significance for guiding the location of towns and cities and urban construction. In
terms of land use intensity, there is a significant trend of increasing land use intensity; for
example, low-density construction land is mainly converted into high-density construction
land and low-density cropland is converted into high-density cropland. High-density
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construction land can accommodate more people and generate more economic benefits per
unit area than low-density construction land; high-density cropland can provide more crop
output per unit area than low-density cropland. More precisely, in scenario 9, among the
“grassland” sources, 96.0% of the area (37,632 km2) comes from the high-density category
(Figure 17) and 4.0% of the area is low density; overall, 0.103% of the area of this source will
convert into high-density cropland and 2.35% of the area of this source will convert into
construction land.

(a) (b) 

 
(c) (d) 

(e) (f) 

ff

ffi

Figure 16. Areas of (a) cropland; (b) forest; (c) grassland; (d) water; (e) construction; (f) unutilized

land in 2035 under different simulation scenarios.
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Figure 17. Summary of the pixel-by-pixel transformations of the Ruoergai Plateau’s land systems

from 2021 to 2035 in scenario 9. (i.e., if 126.1% GDP increase and 2.5% GEP increase become possible).

Compared with the interconversion between various land use types when intensity is
not considered, the simulation of land use/cover change with consideration of land use
intensity can better determine the conversion within the same land use type, and thus
can simulate the actual changes under different demand scenarios in a more refined and
reasonable way.

5. Discussion

In this section, we discuss previous research on the Ruoergai Plateau and the contribu-
tions of this study. Then we reflect on the limits of our study and look ahead. Finally, we
put forward our policy recommendations based on this study.

Previous studies of the Ruoergai Plateau have included methane production potential,
soil organic carbon, organochlorine pesticides and polychlorinated biphenyls (PCBs), land
desertification and degradation, seismic reflection, ecosystem services and so on [62–67].
Based on the improved CLUMondo model, this study predicts 2035 land transformation
on the Ruoergai Plateau, which is rare in previous studies.

We used an integrated CLUMondo model to build nine scenarios, which is a highlight
of this study. The improved CLUMondo model is based on the driving factors of the
land system to derive the suitability of land. It used two-time points of service demand
to pull the model iteration. However, there are limitations to this approach. First, using
only ecological and economic efficiency may simplify future modeling, for example, by
failing to consider resource efficiency [68]. Secondly, this future scenario is based on
hypothetical economic growth rates and ecological efficiency growth rates for existing
years (2017 and 2021). There are too many implemented factors for the model and focusing
mainly on economic and ecological benefits is too simple. It does not represent absolute
future results and may differ from actual developments. As a result, the results of this
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study may be uncertain, and evaluation through field studies and more detailed resolution
assessments will enhance the study’s evaluation when time and data are available. In
addition, the robustness of the model has not been proved. Land types that considered
intensity were likely to have lower Kappa than land types that did not consider intensity.
It can be used to predict the whole area and even the broader area of the Tibetan Plateau
and can be used as a reference for constructing and protecting measures according to
local conditions.

To better balance the ecological protection and economic development of the Tibetan
Plateau region, the following countermeasures are proposed according to the simulation
results for different future needs:

(1) To meet economic development needs, the amount of land used for construction
needs to be increased substantially.

Comparing the current situation in 2021 with the spatial distribution of projected
results in 2035, the low-density construction land in the nine scenarios was mostly replaced
by high-density construction land, and the low-density cropland was mostly replaced by
high-density cropland.

(2) Optimizing the development structure for construction land and cropland.

According to the simulation results, to achieve economic benefits, the land use in-
tensity of cropland and construction land is increasing, which shows that the current
construction land and cropland have the potential to develop in a more intensive direction.
The development of construction land and cropland should focus more on the intensity
of development rather than the proportion of the two areas. This can effectively solve
the problem of irrational utilization and exploitation of limited land resources caused by
the conflict between cropland and construction land. Therefore, it is beneficial to bring
into play the ecological value of the Ruoergai Plateau as an important water conservation
ecological function area in the upper reaches of the Yellow River and to maintain a more
stable ecological balance.

(3) The central plain of Aba County and the northwest of Ruoergai County are suitable
for town selection and urban construction.

According to the spatial distribution of the simulation results, the increase in high-
density construction land in 2035 is concentrated in the low plain of Aba County and the
northwest of Ruoergai County. The high-density cropland and high-density construction
land in these areas show the characteristics of centralized distribution and low heterogeneity
of internal space. Therefore, to develop the economy with ecological considerations as far
as possible, priority should be given to the development of such areas so that unnatural
areas of the Ruoergai Plateau can be utilized to a certain extent for regional development.

6. Conclusions

This study improves the CLUMondo land change simulation model by integrating the
MaxEnt model and Boltzmann entropy. The enhanced model simulates land use changes
in Ruoergai grasslands of the Qinghai-Tibet Plateau. In addition to considering land
use/cover changes, this study also incorporates changes in land use intensity.

The accuracy evaluation of the model involves four sets of comparative experiments.
In the four models, the model integrated MaxEnt and Boltzmann entropy to achieve the
highest accuracy, with a Kappa of 0.773.. Furthermore, the simulation results considering
land use intensity changes are more refined than only considering land use/cover changes.
Considering land use intensity changes can reflect the transformation processes between
different intensities within the same land use type.

During the land use simulation of Ruoergai Grassland under nine different scenarios
of ecological and economic benefits, the following findings are noted:

(1) With increasing ecological benefit demands, the water area significantly increases,
and the intensity of forest and grassland utilization shows an increasing trend. With
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0.25% GDP growth, the water area is about 178 km2. With 2.5% GEP growth, the
water area is about 202 km2. The latter is 24 km2 more than the former, which is about
13.6% greater. Low-density forest decreased by 82.2%, High-density forest increased
by 6.0%, Low-density grassland decreased by 62.2%, and High-density grassland
increased by 0.7%.

(2) With increasing economic benefit demands, construction land and grassland utiliza-
tion intensities increase. The plain area in the central part of Ruoergai County expands
outward for construction land, and new clusters of construction land appear in the
eastern region. With 12.6% GDP growth, the High-density construction area is about
399 km2. With 126.1% GEP growth, the water area is about 761 km2. High-density
construction land increased by 90.7% (about 362 km2) and High-density grassland
increased by 0.6% (about 30 km2).

In future research, expanding the intensity levels of land use, such as subdividing
cropland into low-density, medium-density and high-density categories, is recommended.
This refinement would allow for more detailed simulation results, enabling a better un-
derstanding of land use intensity variations. Additionally, expanding the study area and
applying the improved integrated model to the entire Qinghai-Tibet Plateau or even larger
regions for land use simulation would be beneficial. This broader scope would provide
a more comprehensive analysis of land use dynamics and their implications on a larger
spatial scale.
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