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A B S T R A C T   

Systematically recognizing spatial patterns and driving factors of cultivated land fragmentation is of great sig-
nificance for the exploration of locally appropriate path to relieve cultivated land fragmentation. This study aims 
to estimate cultivated land density, mean patch size and area-weighted mean shape index to respectively indicate 
the characteristics of cultivated land fragmentation from three dimensions, namely, natural resource endow-
ment, spatial partition, and convenience of utilization. The regional leading factors of cultivated land frag-
mentation are also analyzed. The results demonstrate that the distribution of cultivated land density is higher in 
Northern regions compared with those of southern regions. The significant positive correlation between culti-
vated land density and mean patch size is found to be universal across nearly all cities, exceeding differences in 
terrain, elevation, climate, soil, and social economic condition. For cities in the southern part of China, cultivated 
land of regular shape is partitioned to smaller blocks compared with irregular ones; alternatively, intensive and 
meticulous farming under small-scale agricultural operation leads to clusters with low mean patch size - low 
area-weighted mean shape index. Random forest model explains the impact of driving factors on cultivated land 
fragmentation, with an explanatory power ranging from 66% to 95%. The terrain factor emerges as the primary 
driver negatively affecting cultivated land density. Gross domestic product emerges as the dominant factor with a 
significant (p < 0.01) negative correlation to mean patch size for nearly all agricultural climatic zones. Terrain, 
gross domestic product and population is the most important factor affecting area-weighted mean shape index. 
Rural development degree influences correlation between dominant factors and cultivated land fragmentation. 
This study is greatly instructive for recognizing the spatial patterns of cultivated land fragmentation at the na-
tional scale and for exploring the barriers that impede regionally scaled cultivated land use.   

1. Introduction 

Cultivated land fragmentation (CLF) refers to that driven by natural 
and human factors, cultivated land is divided into fragmented plots of 
different sizes with a discrete or disorderly land use pattern, which 
renders the large-scaled operation of agricultural production difficult 
(Ntihinyurwa, de Vries, 2020; Abubakari et al., 2016). CLF is a universal 
challenge related to sustainable cultivated land use around the world 
(Sklenicka, 2016; Lu et al., 2018; Liu and Li, 2017b). Despite the 

advantage of CLF in terms of diversifying crop planting and resisting 
risks under a few specific conditions (e.g., labor surplus), an increasing 
number of empirical studies emphasize its negative effects, such as the 
restriction of application of agricultural machines (Chaudhary et al., 
2020; Cao et al., 2020), reduction of crop yields and household income 
(Wan, Cheng, 2001; Tran, Vu, 2019), exacerbated habitat loss and 
cultivated land shrinking (Teillard et al., 2014; Qiu et al., 2015; Qian 
et al., 2020), aggravated cultivated land marginalization, and even 
hindrance of rural development (Long, 2014, 2019; Liu, 2018a; Looga 
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et al., 2018). Thus, a systematic recognition of spatial patterns and the 
driving factors of CLF is of great significance for the exploration of 
locally appropriate path to relieve it and, thereby, promote intensive 
land use (Jin et al., 2024; Liu and Zhou, 2021). 

Challenges related to the recognition of characteristics of CLF are 
complex. Initial studies focus on the influence of scattered landowners 
and scattered plot distribution related to CLF at the family scale from the 
economic perspective (Looga et al., 2018; Ciaian et al., 2018). CLF is 
mainly indicated by total household cultivated land area, land plot 
number, and average plot area (Falco et al., 2010; Demetris et al., 2013; 
Cao et al., 2020). Research data are mainly derived through question-
naire surveys and interviews, which are costly and lead to difficulty in 
achieving a large-scale estimation. The development of medium- to 
high-resolution remote sensing observation technology introduces sup-
port for data in estimating the characteristics of insufficient operation 
scale, spatial dispersion, and inconvenient farming conditions of culti-
vated land at the national or regional scale (Ye et al., 2018, 2022a; Liu 
et al., 2019b). Using land use/land cover (LULC) raster datasets, several 
landscape fragmentation indexes (e.g., mean patch size (MPS), patch 
density, largest patch, area-weighted mean shape index (AWMSI), the 
Simpson index, the Januszewski index, edge density, division index, and 
cohesion index) can be calculated to identify the multi-dimensional 
features of CLF, from the perspective of landscape ecology (Yan et al., 
2016; Deininger et al., 2017; Looga et al., 2018). However, presenting 
CLF due to dispersive cultivated land ownership (or tenure) and diver-
sified crop planting by using LULC datasets is difficult (Yu et al., 2018; 
Ye et al., 2020; Xu et al., 2021). Moreover, in certain cases, compre-
hensive estimation is conducted using the weighted average method to 
present the overall characteristic of CLF (Gonzalez et al., 2007; Hart-
vigsen, 2014; Liu et al., 2019a). The application of weighted average 
method exerts a smooth effect that may cover up serious shortcomings of 
CLF. 

Another challenge lies in understanding the occurrence and devel-
opment of CLF. On the one hand, the influence of land reform, inheri-
tance custom, agricultural development and terrain features on CLF 
exhibits similarities across various study cases. Land reform events in 
history are generally considered to be the leading factors causing abrupt 
changes of CLF degrees (Kopeva et al., 1994; Hartvigsen, 2014; Viet 
Nguyen, Ngoc Tran, 2014). At the peasant household scale, family size 
and the proportion of labor force members within the family emerge as 
important factors influencing CLF (Tan et al., 2006). The presence of 
complex terrain features physically limits the contiguous distribution of 
cultivated land, and increases farming costs and risks, driving farmers to 
choose diversified planting patterns, thus exacerbating CLF (Ye et al., 
2022a, 2023). On the other hand, the driving effect of natural-
—social—economic factors on CLF exhibits regional differences and 
multi-scale characteristics. At the scale of peasant households, factors 
such as household income, number of non-farmers, and the stress of 
parenting life may drive some households to participate in agricultural 
land circulation, leading to a reduction in CLF (Chen et al., 2010; Xie, Lu, 
2017). But in mountainous areas, the driving effect of these factors is 
limited by the complex terrain features (Yucer et al., 2016; Qian et al., 
2020). At the regional scale, an increase in GDP, urbanization rate, and 
the proportion of industry and services has a positive impact on 
improving the opportunity cost of farming and promoting agricultural 
land circulation. Nevertheless, these factors also contribute to the 
occupation of cultivated land by the construction of residential land, 
roads, industrial and mining facilities, and agricultural facilities, 
resulting in an increase in CLF (Liu et al., 2019a). For certain study cases 
in developed provinces in plain areas (e.g., Jiangsu province of China), 
the influence of the distance from the nearest water plot and density of 
water network have been verified to be non-significant (Liu et al., 
2019a). Conversely, these factors have been found to significantly 
exacerbate CLF in multiple mountainous case studies (Guo et al., 2017; 
Wang, Xu, 2022a). This phenomenon can be explained by Liu and Jin’s 
theory (2022), which suggests that for areas in the “extreme rural stage”, 

CLF is more influenced by spatial location and less affected by external 
social and economic factors. 

The overall goal of the current study is to estimate spatial patterns in 
CLF and identify regional driving factors at the national scale by taking 
mainland China as case study. Cultivated land density, mean patch size 
(MPS) and area weighted mean shape index (AWMSI) are used to indi-
cate the characteristics of CLF from three dimensions, namely, natural 
resource endowment, spatial partition, and convenience of utilization, 
respectively. This study contributes in two main ways. First, it presents 
the national spatial pattern of CLF indicators using a 1-km grid as the 
basic statistical unit. The initial spatial data on cultivated land are 
organized in a vector format and derived from the second national land 
use survey of China. This approach enables a better description of the 
spatial heterogeneity of CLF within administrative units. And it provides 
a clearer depiction of the distribution characteristics of cultivated land 
plots compared to the land use type data based on remote sensing 
classification. Second, the study employs a clustering method to express 
spatial clustering patterns of different CLF dimensions, providing a more 
effective representation of the main shortcomings of regional CLF 
compared to the traditional weighted average method. Additionally, by 
using the Random Forest model and partial correlation analysis method, 
the study identifies the regional dominant factors of CLF and offers a 
broader understanding of the spatial differences in their influence on 
CLF. This study is mainly instructive for recognizing the spatial patterns 
of CLF at the national scale and for exploring barriers that impede 
regionally scaled cultivated land use. It can also provide a narrative of 
China’s experiences in CLF management that can serve as a model for 
other countries. 

2. Material and methods 

2.1. Data 

The indicators of cultivated land fragmentation (CLF) are calculated 
on the basis of vector data of cultivated land plots. The initial spatial 
data on cultivated land plots are organized in vector format from the 
second national land use survey of China, which was conducted on 
2007–2009. The total quantity of plots is approximately 67 million. 
Using the vector data of cultivated land plots, the study intends to 
elucidate CLF due to decentralized land use rights and diversified 
planting structure compared to using raster data on cultivated land 
cover. The division of the study area refers to the agricultural climatic 
zoning plan in China. Toward this end, the study calculates six factors (i. 
e., elevation; slope; distance to urban boundary; farming distance; GDP; 
population) within 1-km grids to quantitatively estimate the driving 
forces of regional CLF. Raster images on elevation and slope are derived 
from the ASTER GDEM V3 dataset. The distance of each grid to urban 
boundary is indicated by the Euclidean distance to the nearest urban-
–rural boundary grid for urban land use data for 2010 within a 1-km 
resolution (He and Liu, 2018b, 2019). For each cultivated land plot, 
farming distance is indicated by the Euclidean distance to the nearest 
rural residential area (excluding roads). Farming distance within the 1- 
km resolution grid is calculated as the average farming distance of all 
cultivated land plots inside the grid (Liu et al., 2023). Data on rural 
residential areas are extracted from the GlobeLand30 dataset for 2010 
(Chen et al., 2017). Data on GDP and population based on the 1-km grid 
for 2010 are obtained from the Resources and Environmental Science 
Data Center (Xu, 2017a, 2017b). Table 1 provides detailed information. 

2.2. Generation of 1-km grid-based cultivated land fragmentation (CLF) 
maps 

The study categorizes the initial dataset on cultivated land plots by 
taking the county as data organization unit (i.e., cultivated land plots in 
each county correspond to one independent spatial data file [format: *. 
shp]). The study utilizes various spatial coordinate references of these 
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files following the Gauss 3-degree zonal projection and ellipsoid pa-
rameters of GCS 2000. Hence, merging the vector data files of numerous 
cultivated land plots into one grid map is difficult (Ye et al., 2016; Yao 
et al., 2017; Wang et al., 2022b). 

Ye et al. (2022a) generated a 1-km grid-based cultivated land po-
tential yield map using the Raster Dataset Clean and Reconstitution 
Multi-Grid (RDCRMG) architecture to guide data reorganization (Ye 
et al., 2018). A similar method was used to generate 1-km grid-based 
CLF maps. According to RDCRMG, a 1-km square grid map that cover 
mainland China was generated based on the Albers equal-area conic 
projection: “grids in the same level have been generated line by line with 
uniform size, shape and orientation” (Ye et al., 2018). The study inte-
grated a strict grid coding rule and a storage strategy called no metadata 
model-based files for rapid data retrieval and merging. For each grid, 
cultivated land density, MPS, and AWMSI has been calculated. Culti-
vated land density and MPS increase as with the decrease in the degree 
of CLF, whereas an increase in AWMSI indicates an increased degree of 
CLF. The subsequent text outlines the generation process of the 1-km 
grid-based CLF maps. Steps 1 to 4 can be executed in parallel among 
multiple grids. 

Step 1: convert the spatial coordinate system of the vector data file of 
cultivated land plots for each county from the Gauss 3-degree zonal 
projection to the Albers equal-area conic projection. 

Step 2: generate 1-km square grid maps according to the bounding 
box of mainland China based on the Albers equal-area conic projection. 

Step 3: for each 1-km square grid, reorganize cultivated land plots 

that intersect with the grid into one unique vector data file through data 
extraction and merging. The original shape of each cultivated land plot 
should not be clipped. 

Step 4: extract the corresponding vector data file (if any) of each 1- 
km square grid; calculate MPS using Eq. (1) and assign the result to 
the grid; and output a 1-km grid-based MPS map. A presents the total 
cultivated land area of a specific vector data file (i.e., grid); N presents 
the quantity of cultivated land plots. Similarly, 1-km grid-based AWMSI 
map can be generated using Eq. (2). For specific cultivated land plot i, its 
perimeter and area are presented as Pi and ai, respectively. Lastly, the 
corresponding vector data file of each grid has been clipped using the 
bounding box of the grid. The cultivated land density of each grid is then 
calculated as the proportion of cultivated land area to the total area of 
the grid (i.e., 1 km2). 

MPS = A/N (1)  

AWMSI =
∑N

i=1

0.25 × Pi
̅̅̅̅ai

√ ×
ai

A
. (2)  

2.3. Pearson correlation coefficient 

For this study, for each prefecture-level city, Pearson correlation 
coefficient r between any two variables (be expressed as x and y) of the 
three cultivated land fragmentation indicators (i.e. mean patch size; area 
weighted mean shape index; cultivated land density) has been calcu-
lated, as Eq. (3) shows (Rodgers, Nicewander, 1988). σx and σy are 
standard deviations of x and y, and x and y are mean value of x and y, and 
m is the number of cultivated land grids in the prefecture-level city. Then 
we ran tests of t distribution for each prefecture-level city to evaluate the 
significance of r, according to Eq. (4). 

r =
1

m − 1
∑m

i=1
(
xi − x

σx
)(

yi − y
σy

), (3)  

t =
|r − 0|

̅̅̅̅̅̅̅
1− r2

v

√ ∼ T（m − 2），v = m − 2, (4)  

2.4. k-means clustering algorithm 

The k-means clustering algorithm was originally derived from a 
vector quantization method in signal processing and is one of the most 
widely used algorithms in cluster analysis (MacQueen, 1967). The al-
gorithm is easy to describe, and its processing efficiency is high in large 
datasets. Moreover, it can produce a good clustering result when the 
sample distribution is close within the classes and far away between the 
classes. It has been widely used in soil analysis and natural language 
processing at home and abroad (Wilpon and Rabiner, 1985; Kanungo 
et al., 2002; Brus et al., 2006). The core idea is to divide n samples into k 
cluster categories, minimizing the sum of the square distance of each 
sample with its cluster center, i.e., within-cluster sum of squares is the 
smallest sum that satisfies the clustering result (Eq. (5)), where x is the 
sample value; Y is the category set; yj is a category in the category set, 
and zj is the cluster center in the category yj. 

argYmin
∑k

j=1

∑

x∈yj

||x − zj||
2 (5) 

The algorithm steps are as follows:  

(1) Determine the appropriate number of categories k based on prior 
knowledge. The category set Y is {y1y2, ., yk};  

(2) The observation sets {x1,x2,x3, ., xn} are the known samples while 
the optional k samples are given as the initial cluster center 
{z1z2, ., zk}, corresponding to k number of categories; 

Table 1 
Detailed dataset information related to estimate cultivated land fragmentation 
indicators and analyze their driving factors.  

Dataset Definition Data source Applications 

Cultivated land 
plots 

Cultivated land plots 
of each county 
generated by 
remote-sensing and 
field investigation 

Second national 
land survey of 
China, performed 
during 2007–2009 
(Cheng et al., 2014) 

(Ye et al., 2014, 
2019, 2020, 
2022b;Yao 
et al., 2016) 

China 
agricultural 
climatic 
zoning data 

Nine agricultural 
zones have been 
generated according 
to climatic and 
topographical 
conditions 

Resource and 
environment 
science and data 
center [htt 
ps://www.resdc. 
cn/] 

(Ren et al., 
2022, 2023; Ye 
et al., 2020) 

ASTER GDEM 
V3 dataset 

Digital elevation 
model dataset in 30- 
meter spatial 
resolution, 
published by NASA 
and METI 

Geospatial Data 
Cloud site (htt 
p://www.gscloud. 
cn) 

(Ye et al., 2017; 
Wan et al., 
2021) 

1-km resolution 
urban land 
use data 

Global urban land in 
1992, 1996, 2000, 
2006, 2010, 2016. In 
each data, the digital 
number of 1 denotes 
urban land 

(He and Liu, 2018, 
2019) (https://doi. 
org/10.10 
88/1748-93 
26/aaf936) 

(Huang et al., 
2021; Kuang 
et al., 2022; Ye 
et al., 2022a) 

2010 
GlobeLand30 
dataset 

A peer-reviewed 30- 
metre resolution 
global land cover 
dataset in 30-meter 
spatial resolution 

(Chen et al., 2014, 
2017) 

(Yang et al., 
2017; Lu et al., 
2016; Arsanjani 
et al., 2016) 

1-km resolution 
GDP dataset 

County-level GDP 
data is scaled down 
to kilometer-grid 
units, in 1995, 2000, 
2005, 2010, 2015 
and 2019 

(Xu, 2017a) (http: 
//www.resdc.cn/, 
doi:10.12078/2 
017121101) 

(Adnan et al., 
2020; Zhang 
et al., 2022) 

1-km resolution 
population 
density 
dataset 

County-level 
demographic data is 
scaled down to 
kilometer-grid units, 
in 1995, 2000, 2005, 
2010, 2015 and 
2019 

(Xu, 2017b) (http: 
//www.resdc.cn/, 
doi:10.12078/2 
017121101) 

(Liu, Wang, 
2016;Carrao 
et al., 2016)  
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(3) Calculate the distance between the sample xi and each cluster 
center zj. Determine the closest cluster center zj, and assign xi to 
the category yj to which zj belongs;  

(4) After all samples are allocated, the samples in each category yj 
(j = 1, 2, …, k) are recalculated to obtain a new cluster center 
zj ; 

Finally, if all the category center positions {z1z2, ., zk} remain un-
changed and the results tend to converge, then the output category set is 
{y1y2, ., yk}. Otherwise, go to step (3) for further iterative calculations 
until the classification result converges. 

2.5. Random Forest model 

Random Forest (RF) is an integrated machine learning model that 
aggregates multiple decision trees to make repeated predictions (Brei-
man, 2001). Large-scale data sets can be handled efficiently and 
randomness is introduced to make overfitting less likely. For each de-
cision tree, the random forest method performs self-sampling so that 
error estimates can be based on out-of-bag sample data. During tree 
generation, each split node of each tree is generated randomly and its 
partition consists of few variables. When the random forest is used to 
solve a regression problem, the average of the results of each decision 
tree becomes the predicted value. 

The steps of applying the random forest model are as follows:  

(1) The training set and the test set are divided according to the ratio 
of 75% and 25%.  

(2) The Bootstrap algorithm is applied, and n samples are drawn 
from the training set in a put-back manner from among N 
samples.  

(3) When each node of the decision tree needs to be split, m variables 
are randomly selected from M variables, satisfying the condition 
m < < M. The Gini index is chosen as the information gain 
strategy for node splitting.  

(4) Each decision tree is recursively split from top to bottom until the 
termination condition is satisfied.  

(5) The predicted model is applied to the test set, and the accuracy is 
evaluated using R2 and Root Mean Square Error (RMSE) as 
evaluation metrics.  

(6) The importance score of the variables is obtained by reordering 
the eigenvalues of a column in the trained model and observing 
how much the accuracy is reduced. For unimportant variables, 
being eliminated has little effect on the accuracy of the model, 
while the opposite is true for important variables. 

2.6. Partial correlation coefficient 

Cultivated land systems are subject to multiple influences and the 
correlation between related variables is complex. Thus, the direct study 
of simple correlation coefficients often does not correctly describe the 
relationship between variables. In this case, partial correlation analysis 
can be applied to measure the degree of linear correlation between two 
variables, controlling for the effects of others. The partial correlation 
coefficient can be calculated using Eq. (6). 

ρXY|Z = cor(ϵ̂, δ̂) =
cov(ϵ̂, δ̂)

̅̅̅̅̅̅̅̅̅̅̅̅̅
var(ϵ̂)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅

var(δ̂)
√ (6)  

where ρXY|Z is the partial correlation coefficient of the control variables Z 

for variables X and Y, ϵ̂, δ̂ are the residuals of the multiple linear 
regression established between X, Y and Z, respectively. cov(ϵ̂, δ̂) is the 
correlation coefficient of ϵ̂, δ̂, cov(ϵ̂, δ̂) is the covariance of ϵ̂, δ̂, and 
var(ϵ̂),var(δ̂) are the variances of ϵ̂, δ̂. The residuals ϵ̂, δ̂ eliminate the 

linear correlation between X, Y and Z respectively. Thus, calculating the 
correlation coefficient between ϵ̂, δ̂ gives its partial correlation coeffi-
cient. 

3. Results 

3.1. Spatial pattern of Cultivated Land Fragmentation (CLF) in mainland 
China 

Fig. 1(a) indicates that level of cultivated land density is higher in 
plain regions compared with those of mountainous regions and higher in 
the Northern regions than those of the southern regions. Cultivated land 
distribution in the “four plains of China” (i.e., the Northeast China Plain; 
the Huang–Huai–Hai Plain; the Middle-Lower Yangtze Plain; the Central 
Shaanxi Plain) exhibits various characteristics, such as high aggregation, 
which indicate the sizable endowment of natural resources to support an 
increase in the scale of agricultural operation. A similar, highly 
concentrated distribution of cultivated land is also observed in the 
Chengdu Plain. The spatial distribution of cultivated land density de-
notes significant global autocorrelation features (Moran’s I = 0.574586, 
P < 0.001, Z = 1225.333528). It indicates that that the contiguous grids 
of those with high levels of cultivated land density also tend to display 
high levels of cultivated land density and form high–high clusters and 
vice versa (low–low cluster). The local spatial autocorrelation index 
(Fig. 1(b)) illustrates that the high–high cluster is mainly distributed in 
flat areas of the Northeast China Plain, Huang–Huai–Hai Plain, Sichuan 
Basin and surrounding regions, and the Central Shaanxi Plain in the 
Loess Plateau. For the Middle-Lower Yangtze Plain, the high–high 
cluster only covers parts of the north and midlands. The other high–high 
cluster regions are distributed in the southern part of the Northern arid 
and semiarid region, the central and southeast part of the Yun-
nan–Guizhou Plateau. The distribution of low–low cluster areas is highly 
consistent with the those of the hilly and mountainous regions in China, 
especially Xing’an Mountains, Yanshan–Taihang–Qinling Mountains, 
Wushan–Xuefeng Mountains, Wuyi Mountains, and Hengduan 
Mountains. 

Fig. 1(c) depicts that the distribution of MPS tends to be consistent 
with those of cultivated land density in the Northeast China Plain and 
the Huang–Huai–Hai Plain. It demonstrates that in these regions, a 
suitable farming scale has been implemented with the support of the 
high levels of natural resource endowment. For the hilly and moun-
tainous regions in the Loess Plateau, Southern China, and the Yun-
nan–Guizhou Plateau, MPS is relatively low due to the low levels of 
natural resource endowment. For the Middle-Lower Yangtze Plain, the 
Central Shaanxi Plain, and the Chengdu Plain, initially concentrated 
cultivated land has been spatially partitioned into numerous small 
patches and form a contrast between high levels of cultivated land 
density and low level of MPS. The reason is the equal allocation of 
cultivated land given their soil quality and farming conditions, which 
are driven by the policy on the household contract responsibility system 
and diverse patterns of crop planting. The level of MPS is relatively high 
in the Northern arid and semiarid region, whereas the level of cultivated 
land density is low, because the population is relatively smaller in this 
area than those in the southeastern coastal area. Moreover, in the 
Yunnan–Guizhou Plateau and Southern China (Fig. 1(b)), several high-
–high cluster regions of cultivated land density exist; however, the level 
of MPS in these regions is low. The reason underlying this result is that 
cultivated land in these regions is “aggregated” only from the plane 
perspective. In fact, the wavy terrain has partitioned cultivated land into 
many patches (e.g., terraced fields). The spatial distribution of MPS 
point to the significant features of global autocorrelation (Moran’s I =
0.473866, p < 0.001, z = 464.548603). According to Fig. 1(d), the 
high–high and low–low clusters of MPS indicate a north–south divide. 

As shown in Fig. 1(e), the Northeast China Plain and 
Huang–Huai–Hai Plain illustrate the highest surface regularities in the 
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Fig. 1. (a) 1 km grid-based cultivated land density map (unit: %). Jenk’s natural breaks method had been used for the classification of cultivated land density. (b) 
10 km grid-based local spatial autocorrelation pattern of cultivated land density. (c) 1 km grid-based cultivated land mean patch size (MPS) map (unit: ha.). The 
numerical section of MPS has considered the fractile quantiles. (d) 10 km grid-based local spatial autocorrelation pattern of cultivated land MPS. (e) 1 km grid-based 
cultivated land area weighted mean shape index (AWMSI) map (unit: dimensionless). The numerical section of AWMSI has considered the fractile quantiles. (f) 10 km 
grid-based local spatial autocorrelation pattern of cultivated land AWMSI. Abbreviation of Agricultural Climatic Zoning: NCP (Northeast China Plain); NASR 
(Northern arid and semiarid region); HHHP (Huang-Huai-Hai Plain); LP (Loess Plateau); QTP (Qinghai Tibet Plateau); MLYP (Middle-lower Yangtze Plain); SBSR 
(Sichuan Basin and surrounding regions); YGP (Yunnan-Guizhou Plateau); SC (Southern China). Blank area expresses few cultivated land (e.g. Qinghai-Tibet Plateau, 
urban region) or no data (e.g. Taiwan). 
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formation of cultivated land plots, which indicates added convenient 
conditions for the use of agricultural machinery. The AWMSI of the 
Northern arid and semiarid region and the Middle-Lower Yangtze Plain 
is slightly higher than those the Northeast China Plain and 
Huang–Huai–Hai Plain. Cultivated land with the highest AWMSI is 
concentrated in the eastern part of the Sichuan Basin, western part of the 
Middle-Lower Yangtze Plain, eastern part of the Yunnan–Guizhou 
Plateau. and the Northern part of the Loess Plateau. The local spatial 
autocorrelation index results in Fig. 1(e) highlights the northeast-
–southwest divide of AWMSI. The spatial distribution of AWMSI dem-
onstrates significant global autocorrelation features (Moran’s I =
0.630093, p < 0.001, z = 1111.597444). 

3.2. Pearson’s correlation coefficients among CLF indicators 

Pearson’s correlation coefficients are calculated to present the order 
of degree of the spatial interaction among multi-dimensional CLF in-
dicators from a holistic perspective at the scale of prefecture-level cities. 
As shown in Fig. 2(a), Pearson’s correlation between cultivated land 
density and AWMSI points to evident differences between east and west. 
Prefecture-level cities in the four plains of China (i.e., the Northeast 
China Plain; Huang–Huai–Hai Plain; Middle-Lower Yangtze Plain; 
Central Shaanxi Plain) tend to exhibit significant weak or medium 
negative correlation (p < 0.05). This result demonstrates that grids in 
these cities with high cultivated land density tend to display regular 
shapes and, thereby are more convenient for mechanized farming 
compared with those with lower ones. From this perspective, cities with 
lower values in Pearson’s correlation index exhibit more rational use of 
cultivated land than those of higher correlation index. In cities located in 
the Sichuan, Chongqing, Yunnan, and Guizhou provinces, the relation-
ship between cultivated land density and AWMSI tend to exhibit a sta-
tistically significant (p < 0.05) low-to-medium positive correlation or an 
extremely low correlation. Compared to the negatively correlated cities, 
the terrain of positively correlated cities is more complex and varied, 
and rural development is also relatively backward, which increases the 
difficulty of cultivated land consolidation. 

As shown in Fig. 2(b), Pearson’s correlation between cultivated land 
density and MPS displays a generally significant weak or medium pos-
itive correlation (p < 0.05). This finding demonstrates that grids with 
high cultivated land density for the majority of cities tend to be parti-
tioned to relatively large cultivated land plots, which indicates larger 
agricultural operation scales. From this perspective, cities with higher 
values in Pearson’s correlation index between cultivated land density 
and MPS exhibit more rational use of cultivated land than those with 
lower values. The spatial pattern revealing a significant positive corre-
lation between cultivated land density and MPS appears to be universal 
across nearly all cities, transcending variations in terrain, elevation, 
climate, soil, and socioeconomic conditions. Cities with a significant 
medium positive correlation are distributed widely in a “Y” shape. 

Fig. 2(c) denotes that Pearson’s correlation between MPS and 
AWMSI points to evident differences between north and south. 
Prefecture-level cities in the southern part of China tend to obtain 
significantly weak or medium positive correlation (p < 0.05). In these 
cities, cultivated land of regular shape has been partitioned to smaller 
blocks than those of irregular ones. Alternatively, intensive and metic-
ulous farming under small-scale agricultural operation leads to clusters 
of low MPS–low AWMSI; thus, cultivated land with higher levels of MPS 
is more likely driven by inappropriate land expansion and in a state of 
extensive utilization with high levels of AWMSI. From this perspective, 
cities with lower values in Pearson’s correlation index between MPS and 
AWMSI display more rational use of cultivated land than those cities 
with higher values. Prefecture-level cities with a weak negative corre-
lation are mainly distributed along a line from Heilongjiang province to 
Hubei province, where local grids with higher levels of MPS tend to be 
matched with more convenient conditions for mechanized farming. 

3.3. Clustering characteristics of CLF indicators 

The clustering characteristics of the three CLF indicators have been 
grouped into seven types using the k-means algorithm (see SI Appendix 
A.1 for the Davies–Bouldin index and ANOVA result). As depicted in Fig. 3, 
clustering type F indicates grids with the lowest degrees of CLF (i.e., 
high density; low AWMSI; high MPS), which should be valued and 
protected. Type F grids account for 15.38% of the total cultivated land 
quantity. A total of 92.96% of cultivated land in type F is distributed in 
the Northeast China Plain, Northern arid and semiarid region, and the 
Huang–Huai–Hai Plain. The core shortcoming of CLF for cluster type B is 
low MPS driven by excessive spatial partition. Natural resource 
endowment and the degree of the shape regularity of the spatial form of 
cultivated land under type B are denoted as high level. Thus, promoting 
cultivated land circulation in grids that fall under type B presents several 
advantages such as high potential and low cost. The core shortcoming of 
cluster type A is similar to that of type B, where the cultivated land 
density and AWMSI of type A are in moderate levels. Grids that fall 
under types A and B account for 34.95% and 22.97% of the total 
quantity of cultivated land, respectively. Cultivated land in type B is 
mainly distributed in the Huang–Huai–Hai Plain, Middle-Lower Yangtze 
Plain, Northeast China Plain, and the Northern arid and semiarid region 
accounts for 27.09%, 23.04%, 20.80%, and 13.06%, respectively, of the 
total quantity in type B. Cultivated land in type A is mainly distributed in 
the Middle-Lower Yangtze Plain (23.31%) and the Yunnan–Guizhou 
Plateau (20.72%). For clustering type G, cultivated land density is in 
moderate level, and high levels of AWMSI and low levels of MPS are the 
main shortcomings of CLF. To improve the degree of grids in type G in 
relation to CLF, land consolidation and circulation should be imple-
mented simultaneously. Grids under type G account for 8.03% of the 
total quantity of cultivated land. Cultivated land in type G is mainly 
distributed in the Sichuan Basin and surrounding regions and the Yun-
nan–Guizhou Plateau. Cluster type D indicates a status with severe CLF, 
that is low cultivated land density, high AWMSI, and low MPS. The cost 
of controlling CLF in grids under type D is high with a low potential for 
development. The core shortcoming of cluster type E is the low density 
of cultivated land and low MPS. Grids under types D and E account for 
5.93% and 9.02% of the total quantity of cultivated land, respectively, 
and are mainly distributed in the Middle-Lower Yangtze Plain and the 
Yunnan–Guizhou Plateau. For clustering type C, the degree of CLF is 
mainly restricted by low levels of natural resource endowment of 
cultivated land. Grids under type C are mainly distributed in the 
Northern arid and semiarid region. Thus, expanding cultivated land in 
grids under type C is more appropriate. 

3.4. Regional main driving factors of CLF 

For each agricultural climatic zone, the driving force of six factors (i. 
e., elevation; slope; distance to urban; farming distance; GDP; popula-
tion) on CLF has been quantitatively estimated using the random forest 
model. Sample data of the six factors are organized based on 1-km res-
olution grids that are consistent with the CLF maps. The Cross-verified 
R2 values of the model fit of cultivated land density, MPS, and AWMSI 
are [0.87, 0.95], [0.66, 0.79], and [0.69, 0.89], respectively (see SI 
Appendix A.2 for details on R2 and RMSE). This result indicates that the 
established random forest regression model is applicable to explain the 
driving force of each factor on CLF. The driving force of the six factors on 
CLF is indicated by the increase in mean squared error (Inc. MSE; Fig. 4). 
Partial correlation coefficients have been generated to demonstrate the 
positive or negative relationship of the six factors to CLF (see SI Appendix 
A.3 for details on Inc. MSE and partial correlation coefficients). 

According to Fig. 4, the driving force of multiple factors indicates 
regional differentiation. Slope is the dominant factor that limits culti-
vated land density in the Northern plains (i.e., the Northeast China Plain 
and the Huang–Huai–Hai Plain) and Southern China with a significant 
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Fig. 2. (a) Pearson correlation between cultivated land density and area weighted mean shape index (AWMSI). (b) Pearson correlation between cultivated land 
density and mean patch size (MPS). (c) Pearson correlation between mean patch size (MPS) and area weighted mean shape index (AWMSI). Blank area expresses few 
cultivated land (e.g. Qinghai-Tibet Plateau, urban region) or no data (e.g. Taiwan). 
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Fig. 3. (a) Box-plot of Cultivated Land Fragmentation (CLF) indicators (i.e., cultivated land density; area weighted mean shape index (AWMSI); mean patch size 
(MPS)) for multiple clustering types. (b)-(j) Cultivated land area (unit: 1.0E+04 ha.) of multiple clustering types in: (b) Northeast China Plain (abbr. NCP); (c) 
Northern arid and semiarid region (abbr. NASR); (d) Huang-Huai-Hai Plain (abbr. HHHP); (e) Loess Plateau (abbr. LP); (f) Qinghai Tibet Plateau (abbr. QTP); (g) 
Middle-lower Yangtze Plain (abbr. MLYP); (h) Sichuan Basin and surrounding regions (abbr. SBSR); (i) Yunnan-Guizhou Plateau (abbr. YGP); (j) Southern China 
(abbr. SC). (k) Spatial pattern of clustering characteristics of CLF indicators. Blank area expresses few cultivated land (e.g. Qinghai-Tibet Plateau, urban region) or no 
data (e.g. Taiwan). 
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negative impact (p < 0.01). Cultivated land is more concentrated on flat 
lands. In the southern plains (i.e., Middle-Lower Yangtze Plain and 
Sichuan Basin and surrounding regions), elevation plays the most 
important role in cultivated land density with a significant negative 
impact (p < 0.01). In other words, the distribution of cultivated land is 
more concentrated in regions with low elevation and within limits. In 
the Loess Plateau, the driving force of farming distance is two to three 
times as much as other factors with a significant negative correlation 
(p < 0.01). In the Yunnan–Guizhou Plateau and the Qinghai–Tibet 
Plateau, population exerts the highest positive influence on cultivated 
land density. The driving force of multiple factors is nearly equal in the 
Northern arid and semiarid region. 

In terms of MPS, first, the difference in the quantitative driving force 
of multiple factors on MPS is less than that on cultivated land density. 
The reason underlying this notion is that the influencing process of these 
factors is more complicated under human–environment interactions. 
Second, GDP is the dominant factor of MPS for nearly all agricultural 
climatic zones, except for the Qinghai–Tibet Plateau. In all regions, the 
impact of GDP on MPS is significantly negative (p < 0.01). As such, 
cultivated land in grids with high levels of GDP have suffered from se-
vere segmentation. Third, population is another important factor. In the 
Northeast China Plain and Northern arid and semiarid region, which are 
reliant on high levels of the application of agricultural mechanization, 
cultivated land in grids with low numbers of population exhibit high 
levels of MPS (i.e., a significant negative correlation). Alternatively, in 
other regions, especially in hilly and mountainous areas with high levels 
of labor dependence, the impact of population on MPS is positive. 
Fourth, in the Qinghai–Tibet Plateau, elevation and distance to urban 

are the most important driving factors with a significant positive cor-
relation (p < 0.01). In the Loess Plateau, the driving force of farming 
distance on MPS has decreased compared with that on cultivated land 
density. 

Slope exhibits the largest impact on AWMSI in the Northeast China 
Plain and Huang–Huai–Hai Plain. In the Northern arid and semiarid 
region and Middle-Lower Yangtze Plain, the dominant factor of AWMSI 
is another terrain indicator, that is, elevation. The impacts of these 
terrain indicators are significantly positive (p < 0.01). In the south of 
China (i.e., the Qinghai–Tibet Plateau; Sichuan Basin and surrounding 
regions; the Yunnan–Guizhou Plateau; Southern China), the dominant 
factors of AWMSI are population and GDP. The impact of population is 
significantly positive (p < 0.01), whereas that of GDP is significantly 
negative (p < 0.01). In the Loess Plateau, farming distance, population, 
and GDP display an important impact on AWMSI. The impact of farming 
distance is significantly positive (p < 0.01), and those of population and 
GDP are significantly negative (p < 0.01). 

4. Discussion 

4.1. Comparative analysis with other studies on recognizing spatial 
pattern of Cultivated Land Fragmentation (CLF) 

Many studies provide important inspiration for this research. Against 
this background, this study forms its contribution to the understanding 
of the spatial pattern of CLF in mainland China. Chen et al. (2018) es-
timate the CLF of China using the GlobeLand 30 raster dataset for 2010 
and the patch density index. The result indicates evident differences 

Fig. 4. The driving force of the six factors (i.e. elevation; slope; distance to urban; farming distance; GDP; population) to three cultivated land fragmentation in-
dicators (i.e., cultivated land density, mean patch size (abbr. MPS) and area weighted mean shape index (abbr. AWMSI)), based on increased in mean squared error 
(Inc. MSE), for multiple regions: (a) Northeast China Plain; (b) Northern arid and semiarid region; (c) Huang-Huai-Hai Plain; (d) Loess Plateau; (e) Qinghai Tibet 
Plateau; (f) Middle-lower Yangtze Plain; (g) Sichuan Basin and surrounding regions; (h) Yunnan-Guizhou Plateau; (i) Southern China. Partial correlation coefficients 
between each factor and AWMSI, MPS, cultivated land density is listed. * * indicates p < 0.01. 
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between north and south and between mountains and plains in terms of 
CLF. It also presents changes in CLF at the county level. Compared with 
Chen et al., the current study obtains a comprehensive cognition of CLF. 
The reason is that the result of Chen et al. (2018) cannot present CLF that 
due to the division of cultivated land use right. Therefore, it un-
derestimates CLF in the Middle-Lower Yangtze Plain and Sichuan Basin. 
The result of the estimation of cultivated land density in the current 
study is consistent with that of Chen et al. Conversely, Liu et al. (2019a) 
estimate the CLF of Jiangsu province (China) at the township level from 
three perspectives, namely, resource scale, spatial agglomeration, and 
convenience of utilization. The current study refers to this theory. 
Although the selected indicators of CLF in this study are much less to 
avoid collinearity between indicators as much as possible, the results of 
the CLF estimation of Jiangsu province in the current study are consis-
tent with those of Liu et al. (2019a) This finding demonstrates that 

cultivated land density, MPS, and AWMSI are indicators representative 
of natural resource endowment, spatial partition, and convenience of 
utilization, respectively. The advantage of this study lies in its broader 
scope, encompassing a wider geographical range (i.e., mainland China), 
and its finer scale analysis using 1-km grids. By employing the 1-km grid 
as the unit of estimation, the present study unveils the intricate spatial 
heterogeneity of CLF. For instance, regions located near urban areas 
exhibit lower natural resource endowment, while experiencing higher 
convenience of utilization. This detailed information enhances the un-
derstanding of the driving factors of CLF. Moreover, the estimation 
result of CLF is comparable using 1-km grids. Another difference be-
tween the current study and Liu et al. (2019a) is that the current authors 
use the clustering method to explore regional weaknesses characteristic 
of CLF, which are referenced from Ye et al., (2020, 2022a); b, c). 
Compared with the weighted average method, the clustering method 

Fig. 5. Comprehensive analysis of spatial pattern of CLF and its regional driving factors. [* 1] Cluster characteristics of cultivated land fragmentation is from Fig. 3. 
Fragmentized resource endowment (FRE) presents the degree of CLF that indicated by cultivated land density. Lower cultivated land density indicates higher FRE. 
Fragmentized spatial partition (FSP) presents the degree of CLF that indicated by mean patch size (abbr. MPS). Lower MPS indicates higher FSP. Fragmentized 
utilization convenience (FUC) presents the degree of CLF that indicated by area weighted mean shape index (abbr. AWMSI). Higher AWMSI indicates higher FSP. 
[* 2] Regional dominant factors to CLF is from Fig. 4. The arrangement of factors is in descending order of importance. “+ ” means significant (p < 0.01) positive 
correlation. “-” means significant (p < 0.01) negative correlation. 
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can better preserve the extreme characteristics of CLF. Moreover, Liu 
et al. (2019a) utilized the multiple linear regression model to detect the 
primary factor influencing CLF. The simulated R2 (0.622) of Liu et al. 
(2019a) study is noticeably lower than the Cross-verified R (0.66–0.95) 
obtained in this paper, which is based on the random forest model. The 
utilization of the random forest model allows for a more accurate and 
robust analysis, resulting in a wider range of R values, indicating a 
stronger predictive performance. Qian et al. (2020) analyze the spatial 
patterns of CLF in Liaoning Province using 10-km grids. The result 
demonstrates that CLF in the central plain area of Liaoning province is 
“generally external low, internal high because of the number and divi-
sion of cultivated land patches.” The present study verifies this expla-
nation, because the spatial pattern of MPS exhibits similar 
characteristics. 

4.2. Dominant factors of CLF and appropriate strategies for controlling 
CLF 

To explore strategies for controlling CLF that are locally appropriate, 
the study comprehensively analyzed the spatial patterns of CLF (Figs. 2 
and 3) and its driving factors (Fig. 4), as shown in Fig. 5. The study 
identified and summarized two characteristics of CLF. First, the highly 
fragmentized spatial partition of cultivated land, which is mainly due to 
the division of land use rights and diverse crop planting, is the most 
critical problem related to CLF in mainland China (fragmentized spatial 
partition presents the degree of CLF that indicated by mean patch size. 
Lower MPS indicates higher FSP, in Fig. 5). Liu et al. (2022) conducted 
an analysis of influence of rural development on the dominant factors 
affecting CLF in Jiangsu province. Consistent with Liu et al. (2022), this 
study reveals that the regional dominant factors and their impact 
characteristics on the fragmentized spatial partition of cultivated land 
differ or even reverse in better-developed rural areas (mainly in the 
economically developed eastern plain areas) and backward rural areas 
(mainly in the economically backward mountainous or plateau areas). 

In better-developed rural areas, contiguous plots of cultivated land 
tend to be equally allocated to many families given the soil properties 
(Tan et al., 2006; Chen et al., 2010). Economic development exacerbates 
the construction of residential land, roads and agricultural facilities, 
leading to an increase in the fragmentized spatial partition of cultivated 
land. Studies by Liu et al. (2019a) and Xu et al. (2021) indicates that 
GDP per capita, population per unit area, the proportion of industry and 
services, and slope are the dominant factors influencing CLF in Jiangsu 
province. Wang et al. (2020) reports that population density, GDP per 
capita, forest area ratio, slope and elevation are the dominant factors 
affecting CLF in Guangdong province. In the current study, the authors 
propose that GDP and population are the most important factors of MPS, 
where terrain factors have the largest impacts on cultivated land density 
and AWMSI, in Middle-lower Yangtze Plain. In southern China, popu-
lation, GDP and elevation show higher influence to MPS and AWMSI, 
and slope is the most important factor to cultivated land density. 
Thereinto, GDP is the dominant factor positively exacerbating the de-
gree of fragmentized spatial partition. Therefore, promoting cultivated 
land circulation and the consolidation of hollow villages are key stra-
tegies for controlling fragmentized spatial partition in better-developed 
rural areas. This is because these areas generally have high potential for 
cultivated land circulation as their high cultivated land density, flat 
terrain, and dense populations. Moreover, high levels of GDP in these 
areas can provide better conditions for the circulation of cultivated land 
(Chen et al., 2010). In the implementation process, the erosion of 
cultivated land by urbanization requires strict management, and policies 
toward the circulation of cultivated land, and the consolidation of hol-
low villages should be improved by setting clear and sufficient re-
sponsibilities for both parties to protect the benefits of renters and to 
respect the wishes of lessors (Cao et al., 2020). Especially in the context 
of more developed rural areas in southern China, reinforcing cultivated 
land circulation and land consolidation becomes imperative. These 

regions possess abundant agro-climatic resources, which present an 
opportunity to enhance the efficiency of large-scale agricultural man-
agement. The use of transferred cultivated land should be regulated to 
avoid the non-food phenomenon and overexploitation, and the liveli-
hood of migrant farmers should be considered (Liu et al., 2014a,b,c, 
2018b). 

Several studies on mountainous counties have generally identified 
farming distance, slope, and elevation as significant factors influencing 
CLF, which aligns with findings in this paper (Zhang et al., 2016; Guo 
et al., 2017; Chang et al., 2021). This study provides a more detailed 
analysis of the regional variations in the impact of these dominant fac-
tors on CLF in mountainous areas. In backward rural areas characterized 
by undulating terrain, high farming and transportation costs, and low 
labor efficiency, the size of cultivated land plots tends to be small. In 
order to meet basic livelihood needs or enhance resilience against 
disaster risks, these small cultivated land plots are often further sub-
divided to grow various crops. Terrain factors (i.e., elevation and slope) 
are the positively dominant factors of the degree of fragmentized spatial 
partition in backward rural areas. The implementation of land consoli-
dation may not be appropriate due to its high cost and low efficiency 
(Wen et al., 2016; Ntihinyurwa et al., 2019). The third national land 
survey’s major data bulletin reveals that nearly 30.0 million hectares of 
cultivated land in mainland China have slopes exceeding 6◦, accounting 
for 22.75% of the total cultivated land area. In regions with challenging 
natural conditions, it is essential to recognize the positive impact of CLF, 
such as increased economic income and reduced farming risks. The 
planting of cash crops should be properly allowed to ensure the liveli-
hood of rural households or attract large-scale management subjects to 
participate in the cultivated land circulation, thus mitigating CLF issues. 
Additionally, promoting the "Grain for Green" program in cultivated 
land plots with high elevation or slope can be beneficial. The other 
important strategy is developing agricultural machinery suitable for 
mountainous regions are key strategies for mitigating the impact of 
wavy terrain and scarce labor on fragmentized spatial partition in 
backward rural areas. Population density represents another crucial 
factor, exhibiting a significant negative correlation (p < 0.01) in these 
regions. On the one hand, as population density increases, so does the 
demand for the division and allocation of cultivated land, exacerbating 
the problem of fragmented spatial partitioning. On the other hand, 
sparsely populated areas often face the challenges of complex terrain 
and diverse cultivation practices. By contrast, negative impact of pop-
ulation density outweighs its positive impact to fragmentized spatial 
partition of cultivated land. Therefore, when conducting research on 
CLF based on different spatial zoning modes (e.g., administrative dis-
tricts, watershed divisions, developing functional zones), it is crucial to 
consider the variations in dominant factors between better-developed 
rural areas and backward rural areas. 

Second, fragmentized resource endowment and fragmentized utili-
zation convenience are mainly exacerbated in backward rural areas, 
which are positively driven by terrain factors and farming distance and 
negatively driven by population (Fragmentized resource endowment 
presents the degree of CLF that indicated by cultivated land density. 
Lower cultivated land density indicates higher FRE. Fragmentized uti-
lization convenience presents the degree of CLF that indicated by 
AWMSI. Higher AWMSI indicates higher FSP, in Fig. 5). The negative 
correlation between population to fragmentized resource endowment 
can be attributed to the tendency of village settlements to cluster in 
areas suitable for farming, resulting in higher cultivated land density. In 
the Yunnan-Guizhou Plateau and Southern China, population and GDP 
exhibit positive and negative correlations, respectively, with the frag-
mentized utilization convenience of cultivated land. This suggests that 
increasing agricultural opportunity cost and promoting rural develop-
ment can significantly reduce AWMSI in these regions. Conversely, in 
Northern arid and semiarid region and the Loess Plateau, farming dis-
tance shows a significant positive correlation with fragmentized 
resource endowment. This finding underscores the importance of 
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concentrating cultivated land expansion and urgently addressing the 
increase in farming distance caused by "occupying near plots and 
compensating farther ones" in these regions. 

4.3. Challenges in cognizing CLF and future work 

To improve regional CLF, effective policies should be promulgated 
and implemented on the basis of cognizing the multi-dimensional 
characteristics and dominant factors of CLF. The cognition and super-
vision of the spatial pattern of CLF put forward high requirements for 
data, theory, and methodology in relation to land computing (Gong 
et al., 2023; Ye et al., 2018, 2020). First, the availability of 
high-resolution remote sensing data enhanced the research on changes 
in land cover and gradually lead to a clear understanding of spatial and 
temporal changes in cultivated land distribution worldwide (Liu et al., 
2014a, 2018b). Despite this achievement, a gap remains in meeting 
research requirements of cognizing spatial pattern of CLF. One such 
challenge arises when using remote sensing images with ten meter-level 
spatial resolution, which may lead to the underestimation of the degree 
of CLF. This is mainly due to the difficulty in identifying the edges of 
cultivated land plots, such as ridges of fields, and the transformations 
occurring in extremely small plots. Additionally, the lack of spatial data 
on the types of crops hinders accurate estimation of CLF driven by 
diversified crop planting. Therefore, future efforts should focus on 
obtaining higher resolution spatial data, especially indicators of crop 
types, to enhance the identification of spatial partitions and spatio-
temporal changes in cultivated land plots (Fang et al., 2022; Wan et al., 
2021). Second, existing indicators of landscape fragmentation may have 
limitations when estimating CLF at the regional scale. For example, 
terrain factors, like terraced fields, are not adequately considered, and 
common methods used to assess landscape clustering may underesti-
mate the degree of CLF due to the coexistence of discrete and aggregate 
distributions of cultivated land. To address these challenges, it is 
essential to promote the development of theory and innovative methods 
for determining the CLF estimation unit and estimating the degree of 
CLF while considering differences in terrain and distribution charac-
teristics. Future research should explore the use of additional indicators 
to characterize CLF and investigate their interactions in different regions 
and scales. 

The other major challenge lies in understanding complex driving 
mechanism of CLF. This study reveals that the dominant factors influ-
encing CLF and their effects vary with the study area and the charac-
teristic dimension of CLF. The correlation between dominant factors and 
CLF is affected by the degree of rural development. Whereas, in this 
study, agroclimatic zoning is used as a spatial unit to study the driving 
factors of CLF, without fully considering the variations in rural devel-
opment degree within agricultural zoning. In future work, it is essential 
to explore the spatial heterogeneity of dominant factors’ influence on 
CLF by employing different spatial partitioning schemes, such as 
administrative unit-based partitioning or sliding window-based parti-
tioning. Additionally, future research should examine how changes in 
the numerical interval of dominant factors affect their correlation with 
CLF. It is also necessary to study the dominant factors of CLF at different 
grid scales, requiring the collection or production of higher spatial res-
olution driver datasets. Moreover, the impact of driving factors on CLF 
was explained by the random forest model with an accuracy range of 
66–95% in this study. Hence in the future of work, more driving factors 
(e.g., urbanization rate, industrial structure, irrigation conditions, road 
density, etc.) should be included. 

5. Conclusion 

This study used cultivated land density, mean patch size (MPS) and 
area weighted mean shape index (AWMSI) to indicate the characteristics 
of Cultivated Land Fragmentation (CLF) in mainland China from three 
perspectives, namely, natural resource endowment, spatial partition, 

and convenience of utilization, based on 1-km2 grids. Pearson’s corre-
lation coefficients were calculated to assess the correlation among multi- 
dimensional CLF indicators from a holistic perspective at the prefecture- 
level city scale. Additionally, the study examined the clustering char-
acteristics and regional driving factors of the three indicators of CLF. 
Regarding the spatial pattern of CLF, the results demonstrated that 
cultivated land density is higher in plain regions compared to moun-
tainous regions, and it is also higher in Northern regions compared to 
Southern regions. The level of MPS tended to be consistent with that of 
cultivated land density for nearly all cities in mainland China, indicating 
that suitable farming scales have been implemented in these regions 
with support from high levels of natural resource endowment. Notably, 
the Northeast China Plain and Huang-Huai-Hai Plain exhibited the best 
coordination between CLF indicators, suggesting more favorable con-
ditions for the use of agricultural machinery. Pearson’s correlation be-
tween cultivated land density and AWMSI pointed to evident differences 
between the east and the west, whereas Pearson’s correlation between 
MPS and AWMSI illustrated clear differences between the north and the 
south. High levels of fragmentized spatial partition in cultivated land 
was considered the most critical problem related to CLF in mainland 
China. Regarding the driving factors of CLF, the random forest model 
explained 66–95% of the impact of these factors. The driving force of 
multiple factors indicates regional differentiation. The terrain factor 
emerged as the main driver negatively affecting cultivated land density, 
except for the Loess Plateau and the Yunnan–Guizhou Plateau. In the 
Loess Plateau, the driving force of farming distance is two to three times 
as much as other factors with a significant negative correlation to 
cultivated land density (p < 0.01). In the Yunnan–Guizhou Plateau and 
the Qinghai–Tibet Plateau, population has the most significant positive 
influence on cultivated land density. GDP emerges as the dominant 
factor, displaying a significant (p < 0.01) negative correlation to MPS 
across nearly all agricultural climatic zones. Population also remains a 
crucial factor influencing MPS. In the Northeast China Plain and the 
Northern arid and semiarid region, grids with low population density 
exhibit high levels of MPS. Conversely, in other regions, particularly in 
hilly and mountainous areas with high levels of labor dependence, the 
impact of population on MPS shows a positive association. Terrain, GDP 
and population are the most influential factors affecting AWMSI, 
demonstrating regional differences. The degree of rural development 
influences the correlation between dominant factors and CLF. Further 
exploration of spatial heterogeneity in the influence of dominant factors 
on CLF requires additional spatial partitioning schemes (e.g., adminis-
trative unit-based partitioning; sliding window-based partitioning). This 
study is greatly instructive for recognizing the spatial patterns of CLF at 
the national scale and for exploring the barriers that impede regionally 
scaled cultivated land use. Lastly, it can serve as a reference for other 
countries by reflecting on China’s experiences in CLF management. The 
research method in this paper can provide technical reference for other 
studies related to CLF. 
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