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A B S T R A C T

The subway system is experiencing significant waterlogging challenges due to climate change and urbanization,
and the enclosed underground structure makes this issue worsen. Identification of subway system waterlogging
resilience (SSWR) and the development of improvement measures are critical. We proposed a “Stability-Resis-
tance-Recovery” assessment framework of the SSWR based on the system performance curve. An integrated
index system was established, which defined and quantified several indexes to capture unique characteristics of
subway systems. The system used inundation results simulated by InfoWorks ICM model as trigger for water-
logging, providing accurate reflection of inundation situations around subway stations. A case study in Beijing
identified the stability and resistance as the leading factors affecting the SSWR, with water bodies surface per-
centage, evening peak departure time interval, and population density having the strongest impacts. Subway
system exhibited a relatively low level of waterlogging resilience, with 51.9% of stations indicating very low or
low levels. Stations at medium SSWR were dispersed throughout the areas neighboring stations at very low or
low SSWR. Stations at very high or high SSWR were minimal and scattered in peripheral areas. This study
provides a widely applicable index system for the SSWR and helps decision-makers devise the improvement
measures.

1. Introduction

As a result of global climate change and rapid urban development,
waterlogging has emerged as one of the most frequent natural disasters
worldwide (D’Ambrosio and Longobardi, 2023; Lu et al., 2022; Ziari
et al., 2023), causing enormous casualties and property loss (Qi and
Zhang, 2022; Zhang et al., 2021). To mitigate urban waterlogging,
various strategies such as rain gardens, green roofs (as green infra-
structure), open detention basins (as blue infrastructure), and pipelines
(as gray infrastructure) are all considered effective in reducing runoff
and mitigating waterlogging losses (Damodaram and Zechman, 2013;
Alves et al., 2019). For instance, Zhao et al. demonstrated the effec-
tiveness of urban waterlogging control through the updating and opti-
mization the spatial layout of impervious surface (Zhao et al., 2024).

To alleviate the transportation pressure caused by urban expansion,
the extensive construction and utilization of underground spaces and
infrastructure have become an inevitable trend (Lin et al., 2023; Qiao
et al., 2024). As a vital component of the underground infrastructure,
the extensive construction of subway system has significantly improved

the quality of life for residents and ensure the smooth operation of cities.
There is no denying the fact that the increasing waterlogging disaster
greatly poses a significant threat to the safety of the subway system (Lyu
et al., 2019b; Lyu et al., 2018). For example, on 30 July of 2023, affected
by the residual circulation of Super Typhoon Duksuri, a rainstorm led to
the closure of Tiananmen East Station, Tiananmen West Station, and
Qianmen Station in Beijing, which seriously disrupted the normal
operation of subway traffic. Moreover, compared to surface and elevated
road traffic, the subway system is more susceptible to waterlogging due
to its enclosed structure and high passenger density. Additionally, the
system takes much longer to recover from waterlogging (Zhao et al.,
2022) and even lead to a series of cascading failures (Yang et al., 2023).
Therefore, it is imperative to place ample emphasis on the safe operation
of subway systems during episodes of waterlogging, as this is essential
for protecting people’s lives and property.

The United Nations Office for Disaster Risk Reduction (UNDRR)
pointed out in the Global Assessment Report (GAR) Special Report 2023
that, in an increasingly complex and hazardous world, resilience is the
key to sustainable development today and in the future. The report
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emphasizes the importance of enhancing resilience to cope with and
withstand impacts. The “Beijing Resilient City Spatial Plan (2022-
2035)” highlights the use of disaster simulation and forecasting to
anticipate various “resilient planning” measures that can be imple-
mented within the city. The goal is to actively mobilize resources and
ensure the basic operation of essential urban functions, thereby
strengthening the city’s capacity to maintain operations during disasters
and to recover afterward. Therefore, in order to strengthen the emer-
gency maintenance and post-disaster recovery capabilities of subway
system in the face of waterlogging and advance the sustainable devel-
opment of the subway system, how to assess and improve the subway
system waterlogging resilience (SSWR) has become an urgent issue that
needs to be addressed (Jiao et al., 2023).

The rest parts of the study are organized as follows: the second sec-
tion is the literature review; the third section presents the research
methods; the fourth section provides a detailed introduction to the case
region and data sources; the fifth section presents the assessment results;
the sixth section analyses and discusses the results; and the final section
presents the conclusion.

2. Literature review

Resilience means “the ability to recover from some disturbance”,
which originates from the Latin word “resilio” (Cimellaro et al., 2010). It
is widely believed that resilience is the ability of a system to re-establish
normal conditions after the occurrence of an event that disrupts its state
(Hosseini et al., 2016). Unlike risk assessment studies that focus on
identifying critical risks to a system, the resilience perspective puts more
emphasis on the ability of a system to adapt and recover from shocks
(Longbin and Hanping, 2024). The proposal of resilience offers a new
research perspective for systems to withstand unpredictable risks.
However, resilience assessment research on subway system to water-
logging disaster still needs more efforts. Goldbeck et al. (2019) devel-
oped a dynamic network flow models to assess the resilience of London’s
subway to a local flooding incident. Nishant et al. (2020) developed a
hypothesis-driven resilience framework based on complex network
theory to assess the resilience of the London rail network under intense
flood hazards exacerbated by targeted attacks. Zhou et al. (2021) uti-
lized the meteorological warning signals and ridership resilience curve
to analyze the resilience of subway ridership under extreme rainfall. Gao
et al. (2024) assessed the resilience of road segments near subway sta-
tions resilience during rainfall disturbance through link reliability and
further quantified the system resilience based on segment failure and
recovery probabilities. Prevailing studies have predominantly concen-
trated on risk assessment. For instance, Wang et al. (2021a) assessed
flood risk of subway system in Guangzhou using improved trapezoidal
fuzzy analytic hierarchy process (AHP). Zheng et al. (2022) proposed an
integrated approach to assess the risk of rail traffic system flooding
disaster during Zhengzhou “7.20 Storm”. Lyu et al. (2020) built a flood
risk assessment structure of Shenzhen subway system, including pre-
cipitation, natural environment, population density, and so on, from
dimension of hazard, exposure, and vulnerability. These studies on
waterlogging resilience or risk assessment of subway system seldom
incorporate hydrological models to characterize real inundation situa-
tions and often neglect the influence of subway system characteristics on
the incidence of waterlogging.

The index comprehensive assessment methodology is the most
commonly used method in resilience assessment, which uses several key
indexes to describe the characteristics of a system (Kotzee and Reyers,
2016; Yang et al., 2023). The research objects are assessed based on the
information provided by various indexes, so that researchers can make
both horizontal and vertical comparisons among the subjects. Existing
resilience assessment of subway system to waterlogging typically
consider factors including the subway system’s engineering facilities,
the subway station’s external environment, external resources, emer-
gency equipment and emergency plans. selected 20 indexes, including

type of exit, resident population, medical, and emergency response ca-
pabilities, to evaluate the resilience levels of 13 subway stations in
Chongqing against rainstorms. However, these indexes cannot
adequately capture the unique challenges subway systems face during
waterlogging events, such as the difficulty in braking subway trains,
high passenger flow at interchange stations, an enclosed internal envi-
ronment, circuitous escape routes, and the complexities associated with
passenger evacuation, all of which can make the subway system more
vulnerable to waterlogging. Moreover, rainfall events are often
employed as a trigger for waterlogging (Lyu et al., 2019a, 2019b; Lyu
et al., 2018, 2020; Xiao et al., 2023). However, merely considering
rainfall events is insufficient to reflect the spatial distribution pattern of
surface drainage situation in the study area. Instead, applying a hydro-
logical model can more accurately reflect the surface drainage situation
(Lyu et al., 2019). The InfoWorks ICM model can completely simulate
the urban rainwater cycle and illustrate the interactions between the
urban drainage network system and the surface water body (Yang et al.,
2023). Accordingly, we expand the scope of assessment by incorporating
subway unique characteristics as additional key indexes, such as the
number of subway route, departure interval time, station length and
subway supporting facilities, and using the simulation results of water-
logging (inundation range, inundation depth, and inundation duration)
as the judgment of surface water accumulation. Based on these factors, a
comprehensive assessment index system of SSWR is proposed.

Although the index comprehensive assessment methodology can
highlight the factors influencing resilience, it cannot describe the dy-
namic changes and balance of system performance during a disturbance
event. It lacks a process-based consideration of resilience, falling to
capture the evolving nature of system response(Feng and Zeng, 2024).
Bruneau and Reinhorn (2007) first proposed the concept of system
performance curve and applied it to the study of seismic resilience of
community and infrastructure systems. Since then, this method has been
widely applied to the study of resilience of other systems (Goldbeck
et al., 2019; Liu et al., 2022; Ma et al., 2023; Yu et al., 2023b). With the
deepening and systematization of transportation resilience study, re-
searchers use the concept of “system performance curve” and combine
the three stages of disaster (before, during, and after disaster) to build a
resilience measurement index, such as robustness, vulnerability and
recoverability (Zhang et al., 2024), so as to characterize the change
process of system resilience under disaster disturbance. Martello et al.
(2021) employed the concept of system performance to delineate the
operational dynamics of Boston’s rail rapid transit network through
pre-disruption, disruption (response and recovery), and post-disruption
phases under coastal flood events. Fang et al. (2022) divided the fluc-
tuation of transportation system performance into four stages, including
the original stability stage, disruption stage, recovery stage, and the new
stable stage, in order to evaluate the resilience of transportation system
under natural disasters. Despite the extensive application of system
performance curves in evaluating transportation system resilience, they
are not commonly used in assessing subway system resilience under
waterlogging disasters. Research in this area lacks a unified framework
to effectively describe the changes in system performance. Therefore,
based on the system performance curves, this study proposes a “Stabi-
lity-Resistance-Recovery” assessment framework in view of the three
stages of waterlogging disasters (before, during, and after). Within this
framework, 25 influencing indexes are identified to assess subway sys-
tem waterlogging resilience and to offer practical, systematic guidance
about how to assess resilience.

Several methods have been proposed for the index comprehensive
assessment, such as the technique for order preference by similarity to
an ideal solution (TOPSIS) (Hwang and Yoon, 1981), fuzzy evaluation
(Zadeh, 1968), grey relation analysis (GRA) (Deng, 1989), and data
envelopment analysis (DEA) (Charnes et al., 1978). TOPSIS ranks the
evaluation object by measuring the distance between the evaluation
object and the optimal solution, and the distance between the evaluation
object and the worst solution. This model can fully leverage the
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information in the original data, and the results can accurately reflect
the gaps between the evaluation objects. Because it can obtain good
comparability assessment ranking results, TOPSIS is now a
well-accepted method for conducting assessments (Peng et al., 2023;
Yang et al., 2020). However, the importance of different indexes varies,
so that scientifically and reasonably calculating index weights can
improve the rationality and credibility of assessment results. Thus, a
necessary step is to determine the weight of each index when using
TOPSIS (Chen, 2021). The entropy weight method (EWM) is one of the
most commonly used methods for calculating weights. This method is an
objective weighting method, therefore, the weights obtained from this
method are more reliable and accurate than those obtained from the
subjective weighting method (Zhang et al., 2022). The EWM has been
verified in water quality assessment (Zhe et al., 2021), ecological
assessment (Xie et al., 2018), and food quality and safety assessment
(Han et al., 2023). Based on this literature review, this study introduces
the EWM into the TOPSIS model to assess the SSWR.

The aims of this study are: (1) to apply a “Stability-Resistance-Re-
covery” framework for SSWR considering the waterlogging process; (2)
to establish a comprehensive index system based on a hydrological
model and characteristics of the subway system for the SSWR assess-
ment; and (3) to analyze the spatial distribution of the SSWR in the
CUAB and provide a scientific basis for disaster prevention and post-
disaster restoration. The novelty of this study lies as followed: (1) to
comprehensively address the waterlogging problem of subway systems,
the InfoWorks ICM model was employed to simulate the interaction
process of rainfall runoff, drainage pipe confluence, and surface water.
This approach allows for a detailed consideration of the interactions
between the subway station and its surrounding environment. By using
model simulation results, including inundation range, inundation depth,
and inundation duration, instead of relying solely on a single rainfall
event as the cause of waterlogging, we can obtain a more accurate
assessment results of waterlogging resilience; (2) several indexes were
defined and quantified to describe the unique characteristics of subway
systems compared to surface transportation systems. It constructed a
more comprehensive assessment index system for assessing the SSWR,
offering a novel approach for the selection and calculation of assessment
indexes.

3. Methodology

3.1. Framework for SSWR assessment

The level of resilience depends on the performance of the system
from being destroyed to recovery. To analyze the resilience of the sub-
way system in the face of waterlogging disturbance, the first step is to
describe the whole response process of the system while being damaged.
Resilience is a manifestation of a process, which can be regarded as a
process responding to and recovering from waterlogging. The three
distinct stages of waterlogging (pre-, during, and post-disruption) align
with three specific dimensions of resilience. These dimensions encom-
pass a range of abilities that collectively contribute to the overall resil-
ience of systems (Francis and Bekera, 2014; Martello et al., 2021; Yu
et al., 2023a). Therefore, this study proposes that in the face of water-
logging interference, the subway system resilience refers to the main-
taining and restoring the normal level of service, and face the next
interference, that is, the organic combination of the stability, resistance,
and recovery. This study takes the process of disturbance caused by
heavy rainfall as the timeline, dividing the system performance state
into disaster prevention stage, disaster diffusion stage, and
response-recovery stage, as shown in Fig. 1. This study shows the
changes of the performance level of the subway system under attack to
identify the various factors that affect resilience, and builds an index
system of SSWR in the dimensions (the stability, resistance, and recov-
ery) based on the system performance curve.

The disaster prevention stage refers to the period from the

occurrence of a disruptive event to the occurrence of negative impacts. A
subway system is disturbed by emergencies, which is the premise of its
performance abrupt change (Bruneau et al., 2003). There is a certain
depth of water accumulation around the subway entrance (at time t0-t1)
when heavy rainfall occurs, but the stability of the subway system make
it maintain original equilibrium state, greatly reducing the risk of
ponding into the subway entrance.

As a rainstorm continues, the negative impact begins to appear, that
is, the water around the subway entrance begins to pour back into the
subway interior (at time t1). At this point, the system is in disaster
diffusion stage, and a temporary closure of some entrances or a shut-
down of partial stations can occur due to an abrupt reduction of per-
formance. However, the system’s resistance will absorb the negative
effects of disturbances to ensure that the system’s functionality is not
completely damaged.

After the system performance decreases, the emergency response
begins to initiate and carry out repair work (at time t2), at which point
the system is in the response-recovery stage until it returns to the orig-
inal equilibrium state or another equilibrium state. In this stage, it re-
flects the responsiveness ability of the government, social organizations,
and individuals.

3.2. Index system for the SSWR

Based on the system performance curve, a multi-dimensional index
system for the SSWR is formed, which can reflect the system perfor-
mance change while being attacked. Fig. S1 shows the simplified sketch
of subway system threatened by rainstorm, which depicts the con-
struction of the index system based on four aspects: 1) inundation sit-
uation, 2) natural environment, 3) subway information, and 4)
sociodemographic information. Table 1 presents the selection of 25
second-level indexes, with their attribution to resilience classified as
either “+” or “-”, denoting the positive or negative correlation with
resilience, respectively.

The factors that affect system’s stability include two aspects. On the
one hand, it refers to the internal or external disturbances that have a
negative impact on the stability, which make the system’s normal
operation state susceptible to disruption (Francis and Bekera, 2014). On
the other hand, it refers to factors that have a positive impact, which
have the ability to maintain system’s original state during the disaster
prevention stage. The inundation range (IR)1, inundation depth (IDE),
and inundation duration (IDU) calculated via the InfoWorks ICM model
serve as external disturbance factors, which are the premise for the
system’s equilibrium state being disturbed. In addition, urban devel-
opment has changed the nature and structure of original land, leading to
an expansion of impermeable surfaces, which significantly increases in
peak runoff and flood volumes (Du et al., 2012). The hydrological
conditions surrounding subway stations also influence their stability to
waterlogging. Green spaces play a crucial role in mitigating rainfall
runoff and minimizing the risk of waterlogging. In terms of geographical
factors, elevation and slope significantly contribute to the occurrence of
waterlogging disasters. Therefore, indexes, including impervious surface
percentage (ISP), water body surface percentage (WSP), river proximity
(RP), green space percentage (GSP), average slope (slope), and average
elevation (elevation), are combined to assess the stability of the subway
system.

The level of system’s resistance is related to its long-term state. The
construction of subway and municipal drainage pipelines directly or
indirectly impacts the resistance of subway system under rainstorms,
consequently affecting the resilience of the subway system. Therefore,
the resistance covers eight indexes, i.e., number of exits (NE), type of
exit (TE), number of subway route (NSR), morning peak departure time

1 All nomenclatures and abbreviations in the methodology have been list in
the Table S1.
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Fig. 1. The entire process of subway system being disturbed by heavy rainfall.

Table 1
The index system for the SSWR assessment based on the system performance curve.

Note: Inundation situation, natural environment, subway information, and sociodemographic information are shown in blue, orange, yellow, and green, respectively.

F. Xu et al.
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interval (MDTI), evening peak departure time interval (EDTI), station
length (SL), subway supporting facilities (SSF), and drainage pipeline
density (DPD), which are related to underground structures and
infrastructure.

The recovery is related to the implementation of emergency response
measures, as well as the availability and spatial allocation of emergency
resources, which are the critical factors in reducing losses under extreme
rainfall conditions (Yang et al., 2023). The fire and rescue services and
the ambulance are the primary emergency responders to extreme
flooding events (Zhang et al., 2022). Medical condition is also an
important factor in disaster recovery. In addition, professional staffing
(PS) also plays an undeniable role in emergency response and is selected
as an index. Public awareness and ability to withstand waterlogging
events are related to age, vulnerable groups such as elderly and children
are severely affected by emergencies (Ekmekcioğlu et al., 2022; Lin
et al., 2018). Moreover, station passenger flow (SPF) and population
density (PD) (Santos et al., 2020) are typical demographic indexes for
assessment. Facilities with high concentrations of vulnerable people
(kindergarten, primary school, and nursing home) within the service
scope of subway stations are also supposed to be taken into consider-
ation (Yu et al., 2020).

3.3. EWM-TOPSIS

3.3.1. EWM
The EWM was introduced by Shannon in 1948 (Shannon, 1948),

which is a method that utilizes the amount of information provided by
the entropy value to calculate the weights of indexes (Jiao et al., 2023).

The procedure for calculation is shown as follows.

(1) Construct the original evaluation index matrix.

Assuming that there are m evaluation objects and n indexes, the
original matrix (X) can be presented as follows:

X =

⎡

⎣
x11 ⋯ x1n
⋮ ⋱ ⋮
xm1 ⋯ xmn

⎤

⎦ =
(
xij
)

mn (1)

where xij is the original data value of the i-th evaluation object under the
j-th index.

(2) Standardize the original data of all the indexes

The evaluation indexes can be divided into positive indexes and
negative indexes in the comprehensive assessment. The extremum
method is used for index preprocessing to normalize the indexes and
eliminate dimension.

The positive indexes are standardized as follows:

zij =
xij − min

(
xj
)

max
(
xj
)
− min

(
xj
) (2)

The negative indexes are standardized as follows:

zij =
max

(
xj
)
− xij

max
(
xj
)
− min

(
xj
) (3)

where min
(
xj
)

is the minimum value of the j-th index, max
(
xj
)

is the
maximum value of the j-th index, and zij is the standardized value of xij.

(3) Calculate the proportion of each index

Pij =
zij

∑m
i=1zij

(4)

where i = 1,2,3,…,m; j = 1,2,3,…,n

(4) Calculate the information entropy of each index

The larger the difference in the values of the objects on a certain
index is, the smaller the entropy is, the more information it provides,
which means that the index deserves a higher weight. In contrary, a
smaller difference means bigger entropy, representing a lower weight.
That is to say, the greater the weight is, the greater the role it can play in
the SSWR assessment. The entropy of each index should be calculated as
follows:

Ej = −
1

ln(m)
⋅
∑m

i=1
Pij⋅lnPij (5)

where m is the number of the objects

(5) Calculate the weight of each index

Wj =
1 − Ej

∑n
j=1

(
1 − Ej

) (6)

where n is the number of the indexes

(6) Calculate the weights of the first-level indexes

Calculate the weight of 25 second-level indexes as a whole, with the
weights of the first-level indexes being equivalent to the sum of the
weights of the second-level indexes it contains.

3.3.2. TOPSIS
The TOPSIS model was initially proposed by Hwang and Yoon in

1981 (Hwang and Yoon, 1981) according to the closeness of the existing
evaluation object and the idealized target (Xiao et al., 2023), which is a
commonly used comprehensive assessment method.

The main calculation steps are as follows:

(1) Use the standardized matrix (Z) obtained from the EWM for the
following calculations

Z =

⎡

⎣
z11 ⋯ z1n
⋮ ⋱ ⋮
zm1 ⋯ zmn

⎤

⎦ =
(
zij
)

mn (7)

where zij is the standardized data value of the i-th object under the j-th
index.

(2) Determine the optimal solution (zmax) and the worst solution
(zmin)

Because all the indexes are converted into optimal indexes, the
optimal solution is composed of the maximum value of each index, while
the worst solution is composed of the minimum value of each index.

zmax =(max{z11,z21,…,zm1},max{z12,z22,…,zm2}…,max{z1n,z2n,…,zmn})
(8)

zmin = (min{z11, z21,…, zm1},min{z12, z22,…, zm2}…,min{z1n, z2n,…, zmn})
(9)

F. Xu et al.



Sustainable Cities and Society 113 (2024) 105710

6

(3) Calculate the weighted Euclidean distance between the i-th object
and the optimal solution (di max), and the distance between the i-th
object and the worst solution (di min).

di max =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1
Wj

(
zmax − zij

)2

√
√
√
√ (10)

di min =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1
Wj

(
zmin − zij

)2

√
√
√
√ (11)

where Wj is the weight of the j-th index obtained from EWM, i = 1,2,3,
…,m; j = 1,2,3,…,n

(4) Calculate the relative closeness to the optimal solution

The relative closeness, which is the assessment score (Si) of the i-th
object, can be calculated by using equation (12). The larger the score is,
the better the assessment results; otherwise, and vice versa.

Si =
di min

di min + di max
(12)

(5) Calculate the SSWR

Therefore, the formula for calculating the SSWR is as follows:

SSWR = Wsta⋅Sta+Wres⋅Res+Wrec⋅Rec (13)

where Sta, Res, and Rec are the relative closeness of the stability, resis-
tance, and recovery to the optimal solution, respectively. Wsta, Wres, and
Wrec are the weights of the stability, resistance, and recovery, respec-
tively.

4. Case study

4.1. Study area

Beijing, located in northern China, occupies an area of 16,410 km2

and serves as the center of politics, culture, international exchanges, and
technological innovation of China. At the end of 2022, the Beijing’s
resident population has reached 21,834,000, with a gross domestic
product (GDP) of 3031.73 billion RMB (Chinese yuan). In the terms of
land use type (Fig. S2), green space (including tree, shrubland, and
grassland) occupies more than half of the total area of Beijing, ac-
counting for 61.31%. The built-up area (including buildings and roads)
accounts for 15.42%, and water bodies occupy 1.55%. In the remaining
areas, cropland, bare land, and wetland accounted for 18.06%, 3.61%,
and 0.04%, respectively. Beijing is situated in the warm temperate semi-
humid and semi-arid monsoon climate zone. The average annual tem-
perature is 13.6◦C, and the average annual precipitation is 698.4 mm,
approximately 75.89% of which occurs from July to September (Na-
tional Bureau of Statistics of China, 2022). Under such climate condi-
tions makes Beijing vulnerable to waterlogging (Wang et al., 2020).

24 subway lines were in operation in Beijing (Fig. S2), with
approximately 760 km and 427 stations by July 1, 2023. The average
daily passenger flow of the Beijing’s subway stood at approximately 9
million in the first half of 2023, with a peak reaching 13.8 million in a
single day (https://metrodb.org). Thus, the Beijing subway system is
among the busiest subway systems in China. Because of the rapid urban
development (Lyu et al., 2019a), the complexity of subway network
structures (Lyu et al., 2020), extreme rainfall (Forero-Ortiz et al., 2020),
and land subsidence (Wang et al., 2021b), subway stations are one of the
vulnerable structures that are exposed in flood-prone areas.

It can be seen from Fig. S2 that due to the influence of urban con-
struction, the central region of Beijing is extensively covered with
impermeable surfaces such as buildings and roads, with less distribution
of green spaces and water bodies, making this area more prone to sur-
face waterlogging. Moreover, this area is the core region of Beijing’s
urban development, hosting approximately 69% of the subway stations,
with intensive human activities. Therefore, this study selected the cen-
tral urban area of Beijing (CUAB) as the study area (Fig. S3) and
construct the Beijing waterlogging model based on it. The CUAB is
located in the northeastern part of the North China Plain, where the
Yongding River passes to the southwest. The study area includes two
capital functional core areas (Dongcheng District and Xicheng District),
and parts of four urban functional expansion areas (Chaoyang District,
Haidian District, Fengtai District, and Shijingshan District).

4.2. Data collection and processing

4.2.1. Inundation situation
This study utilized InfoWorks ICM to comprehensively consider

processes such as rainfall runoff, pipe network convergence, and surface
water flooding, and used high-precision DEM data to divide 2D trian-
gular mesh, to simulate the inundation depth, duration, and range of
each 2D triangular mesh under rainstorm with a return period of 50
years for Beijing. The Code for Design of Subway (GB50157) stipulates
that the entrance and exit of subway stations should be 30-45 cm above
the outdoor ground, thus, the areas with a depth of inundation greater
than 30 cm are extracted by the ArcGIS platform. When the depth of
accumulated water exceeds this depth, there is a risk of water ingress
into the subway. A detailed list of the datasets, along with the source and
resolution of the data, is shown in Table 2.

The research selects 181 subway stations on 21 subway lines in the
CUAB, and extracts the triangular mesh which the depth of accumulated
water is greater than 30 cm within a 100-meter buffer zone based on the
subway station. The inundation depth and time in different triangular
meshes are different, thus, this study obtains the IDE and IDU within the
buffer zone according to the IR of each grid. The formulas for calculating
the IDE and IDU are as follows:

IDE =
∑c

i=0

Rj⋅Ej
∑c

i=0Ri
(14)

IDU =
∑c

i=0

Rj⋅Uj
∑c

i=0Ri
(15)

where R, E, and U are the inundation range, depth, and duration of the
grid respectively, c is the number of triangular meshes contained in the
buffer, and 0≪j≪i≪c.

4.2.2. Natural environment
Fig. S4 shows the spatial distribution of Land use land cover (LULC)

and topography in the CUAB. The built-up and water bodies are
extracted separately from LULC to calculate the ISP and WSP within a
500-meter buffer zone based on the subway station, whereas the river
proximity (RP) refers to the distance between the subway station and the
closest river. Urban green space (UGS), one of the most important
components of the urban ecosystem, refers to vegetation entities in the
urban area, such as parks and green buffers (Shi et al., 2023), so that the
study uses UGS dataset to calculate the GSP, which is defined as the ratio
of the area of green space within a 500-meter buffer zone of the station
to the area of the zone. The slope and elevation are calculated with a
digital elevation model (DEM) in ArcGIS 10.5. The central region has a
total higher slope than the other regions, while the elevation shows a
decreasing pattern from the west to the east.

4.2.3. Subway information
The basic information of the subway is shown in Fig. S5. The NSR
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represents whether a subway station is an interchange station or not,
and how many subway lines pass through the station. The SSF includes
AED and emergency calling device. The PS of the subway is replaced by
the number of police offices and comprehensive control offices. There
are four types of subway exits, namely open, enclosed, semi-enclosed,
and concealed (Fig. S6). Over 700 images are extracted from Baidu
Street View (maps.bimw.cn/baidujiejing/), and manual visual inter-
pretation is used to determine the type of subway station exit. This study
quantifies the TE through the assignment method, with numbers 1, 2, 3,
and 4 representing open, semi-closed, closed, and concealed forms,
respectively. When there are multiple different types of exits in a subway
station, the average score represents the exit type. The morning peak
(7:00-9:00) and evening peak (17:00-19:00) hours are selected as the
research periods when calculating the departure time interval. The
MDTI and EDTI originate from the train timetable (https://www.bjsu
bway.com/). To reflect the intraday changes during normal working
days, the weekday schedule is selected for calculation.

The SPF refers to the total number of people entering and exiting a
subway station over a period of time. This study selects approximately

140 million card swiping data from five working days (June 1st, 2nd,
3rd, 6th, 7th) in 2016 for research. The traffic network data (Zhao et al.,
2020) are supported by the Center for Geodata and Analysis, Faculty of
Geographical Science, Beijing Normal University (https://gda.bnu.edu.
cn/sypt/sjgx/csyjsjj/index.html). The study calculates the average
number of people entering and exiting the subway stations per hour
during morning and evening peak hours as the passenger flow.

This study collects and organizes the urban drainage network for the
research area, reasonably simplifies it, and removes the sewage pipe-
lines, resulting in a simplified network with a total length of approxi-
mately 2,229 km. As shown in Fig. S7, the network density is higher
within the Third Ring Road and lower outside the Fourth Ring Road. The
simplified drainage network data is applied to the InfoWorks ICM model
to simulate the actual water collection process of the network. This
approach allows for an accurate simulation of surface water accumula-
tion, providing precise waterlogging results and reflecting the drainage
capacity near subway stations to some extent. In addition, the DPD is
defined as the ratio of the total length of pipelines within a 500-meter
buffer zone of the subway to the area of the zone. We incorporate the
DPD as an independent index in the assessment index system to assess
the subway system’s resistance to waterlogging.

4.2.4. Sociodemographic information
In this study, a 5-kilometer buffer zone within each fire station is

established as the service area, and the number of times that each sub-
way station is covered by the buffer zone are represented as the FSC of
the subway station. The calculation method of the ASC is the same as
that of the FSC. In addition, the DH refers to the distance between the
subway station and the closest hospital (Xiao et al., 2023).

The PD and VGP refer to the data within the 500-meter buffer of the
subway station, where vulnerable groups refer to the people under 10
years old and over 60 years old. Moreover, the VFC refers to the total
number of kindergartens, primary schools, and nursing homes inside the
buffer zone.

5. Results

5.1. The results of waterlogging risk

The areas with inundation depths exceeding 30 cm were identified
and extracted via the waterlogging simulation results. Subsequently, the
waterlogging risk value was simulated by multiplying the range, depth,
and duration of inundation. These values were categorized into five
levels employing a natural discontinuity method. Fig. 2 displayed the
spatial distribution of waterlogging risk levels. The higher waterlogging
risk was primarily concentrated in the central and southern regions,
mainly distributed in the northern part of Dongcheng District and
Xicheng District, the southern part of Haidian District, and the eastern
part of Fengtai District. Subway stations that are located in close prox-
imity to high waterlogging risk areas, such as Hepingman Station,
Qianmen Station, and Wangfujing Station, are predominantly situated
along subway lines 1, 2, 10, and 14.

5.2. Weights of the resilience assessment indexes

Table S1 showed the weights of each index calculated using EWM. In
general, a higher weight of indicates a greater impact on resilience. Both
the stability (0.4712) and resistance (0.3517) were about twice the in-
fluence on the SSWR compared to the recovery (0.1771). From the
perspective of stability, the LULC around the subway station had a sig-
nificant impact, especially the distribution of water bodies and rivers,
while the influence of topography was relatively minor. This means that
the significant influence of the natural environment surrounding sub-
way stations in maintaining stable operations of the stations during
waterlogging. From the perspective of resistance, the time interval of
departure, number of exits, station length, and the distribution of

Table 2
The data used in this study.

Category Data Source Resolution

Remote sensing
images

Landsat8 (2021) https://www.
gscloud.cn/

30 m

Simulation of urban
waterlogging

Inundation range Simulated in the
study

–

Inundation depth Simulated in the
study

–

Inundation
duration

Simulated in the
study

–

Land use land cover LULC (2020) https://esa-
worldcover.org/en

10 m

River system data River (2023) https://www.
openstreetmap.org/

–

Urban green space UGS (2023) https://www.scidb.
cn/en

1 m

Topography DEM https://www.
gscloud.cn/

12.5

Subway information Number of exits https://www.
bjsubway.com/

–

Type of exit maps.bimw.cn/
baidujiejing/

–

Number of subway
route

https://www.
bjsubway.com/

–

Train timetable https://www.
bjsubway.com/

–

Station length Collected in the
study

–

Subway supporting
facilities

https://www.
bjsubway.com/

–

Drainage pipeline
system

http://www.iwhr.
com/zgskywwnew/
index.htm

–

Professional
staffing

https://www.
bjsubway.com/

–

Station passenger
flow (2016)

https://gda.bnu.edu.
cn/sypt/sjgx/csyjsjj/
index.html

–

Sociodemographic
information

Fire station (2021) https://www.resdc.
cn/

–

Emergency Center
Station (2021)

https://www.resdc.
cn/

–

Hospital (2021) https://www.resdc.
cn/

–

Population (2020) https://www.
worldpop.org/

100 m

Age and sex
structures (2020)

https://www.
worldpop.org/

100 m

Care home,
primary school,
and kindergarten
(2020)

https://www.resdc.
cn/

–
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drainage pipeline exerted strong driving forces on resistance. From the
perspective of recovery, the distribution of emergency response re-
sources and population was the key factors influencing the recovery.
This highlights the importance of rationally allocating emergency re-
sources for disaster recovery. Population density exhibits an inversely
proportional to the recovery to waterlogging, because densely populated
areas face higher risks and pose greater challenges for rescue operations.
Although vulnerable groups and station passenger flow could also have a
negative impact on the recovery, their influence was not as pronounced
as that of the aforementioned indexes.

5.3. The assessment results in different dimensions of SSWR

The stability, resistance, and recovery assessment results for each
subway station were categorized into five levels using the natural
discontinuity method. Levels I, II, III, IV, and V represented very low,
low, medium, high, and very high, respectively. A higher score indicates
that the system performance is better in the process of responding to and
recovering from waterlogging. The station quantity of the stability,
resistance, recovery, and SSWR in five level were shown in Table 3.

The stability was classified into five levels: I (0.117~0.185), II
(0.185~0.230), III (0.230~0.286), IV (0.286~0.386), and V
(0.386~0.716). As illustrated in Table 3, only 17.7% of subway stations
reached a very high or high stability level, while 23.1% attained a me-
dium level, leaving more than half of the subway stations at a very low
or low stability level. The spatial distribution of the stability in the CUAB
was depicted in Fig. 3 (a). Subway stations at very low or low stability

levels were predominantly concentrated in the central area, which was
consistent with the outcomes of the waterlogging risk assessment. The
stability of subway stations in the northwest surpassed that in other
regions, with a majority of them situated along subway lines 1, 4, and
10. Furthermore, the stations at the medium level of the stability
featured the most extensive areas.

The resistance was classified into five levels: I (0.188~0.267), II
(0.267~0.322), III (0.322~0.401), IV (0.401~0.535), and V
(0.535~0.682). Similar to stability, the resistance of the subway system
generally exhibited very low or low levels. 64.6% of subway stations
displayed very low or low resistance levels, while only 10.5% of stations
exhibited very high or high resistance. The spatial distribution of the
resistance in the CUAB was presented in Fig. 3 (b). Obviously, the
resistance levels showed a decreasing pattern from the central area to-
wards the outer periphery. Stations at very low or low resistance were
mainly concentrated on subway lines 1, 2, 4, 5, 6, 9, and 10.

Fig. 2. Spatial distribution of waterlogging risk levels.

Table 3
Station quantity of stability, resistance, recovery, and SSWR in five level.

Level Quantity of subway

Stability Resistance Recovery SSWR

I 25 51 20 28
II 75 66 47 66
III 49 45 51 59
IV 26 13 42 22
V 6 6 21 6

F. Xu et al.
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The recovery was classified into five levels: I (0.320~0.374), II
(0.374~0.423), III (0.423~0.465), IV (0.465~0.512), and V
(0.512~0.588). As shown in Table 3, 34.8% of subway stations
demonstrated a very high or high level of the recovery, whereas only
11.1% of subway stations exhibited a very low level of recovery. In
comparison to the system’s stability and resistance, the recovery value
of subway system was relatively high on the whole, which proved its
relative advantage in disaster recovery. Fig. 3 (c) showed a significant
regional difference of the recovery in the CUAB, with a high level
observed in the eastern region and a low level in the western region.
Specifically, stations at very high or high recovery levels were primarily
concentrated on subway lines 1, 6, 7, and 10 in Dongcheng and
Chaoyang Districts. Stations at very low and low recovery levels were
mainly situated in Fengtai and Xicheng Districts, while stations at a
medium recovery level exhibited a scattered distribution pattern
throughout the CUAB.

5.4. The assessment results of SSWR

The subway system generally exhibited a relatively low level of
resilience to waterlogging, which was classified into five levels: I
(0.215~0.263), II (0.263~0.298), III (0.298~0.334), IV
(0.334~0.406), and V (0.406~0.566). It can be seen from Table 3 that
51.9% of subway stations exhibited a very low or low level of SSWR,
while only 15.5% had a very high or high level of SSWR. Fig. 3 (d)
mapped the spatial distribution of the SSWR. The subway stations at

very low or low SSWR were primarily located on subway Line 10, ac-
counting for 26.6% of the stations falling into these categories. The
remaining stations were primarily found on lines 1, 2, 4, 5, 7, and 9.
Stations at a medium SSWR level were dispersed throughout areas
neighboring the very low and low SSWR stations, mainly on lines 4, 6,
10, and 14. Moreover, the number of stations at a very high or high
SSWR was very small, and these stations were mainly scattered in pe-
ripheral areas.

As shown in Fig. 4, comparing the number of subway stations at
different levels of the stability, resistance, recovery, and SSWR on each
subway line, it was found that the subway system excelled primarily in
the response-recovery stage. Taking Line 10 as a case in point, 33.3% of
subway stations showed a very high or high level of the recovery, while
only 22.2% and 11.1% of subway stations were at a very high or high
level of the stability and resistance, respectively. In particular, Lines 8
and 14 stood out for their superior SSWR performance, characterized by
fewer subway stations at very low or low SSWR, with the majority
registering at a medium or higher SSWR level. Nevertheless, the SSWR
level of the remaining lines was relatively low, especially for Line 2,
where 88.8% of subway stations were at very low or low levels of the
SSWR.

The performance of subway stations when facing waterlogging was
illustrated in the scatter plots (Fig. 5), which compared the SSWR to the
resilience in three dimensions (the stability, resistance, and recovery)
for the 181 subway stations. The top three subway stations in terms of
the SSWR were Olympic Park Station (0.5658), Beihaibei Station

Fig. 3. Spatial distribution of the stability (a), resistance (b), recovery (c), and SSWR (d) in the CUAB.
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(0.5394), and Tiananmenxi Station (0.4643), while the lowest three
were Jiaomendong Station (0.2154), Keyilu Station (0.2338), and
Huixinxijienankou Station (0.2348). Overall, the subway system per-
formed relatively well during the response-recovery stage. Specifically,
92.8% of subway stations had SSWR values less than 0.375, with su-
perior performance of the recovery. 4.4% of subway stations had SSWR
values ranging from 0.375 to 0.433, with stronger resistance compared
to the stability and recovery. The remaining 2.8% of subway stations
mostly displayed the strongest stability. It is evident that the dispersion
of the stability was the most pronounced, while recovery showed min-
imal dispersion, indicating significant differences in performance among
subway stations during the disaster prevention stage. Remarkably,
subway stations with higher SSWR values actually exhibited superior
stability, suggesting their superior ability to maintain stability in the
early stage of waterlogging. Conversely, subway stations with lower
SSWR values often excelled in recovery, indicating their superior per-
formance during the post-disruption phase.

6. Discussion

6.1. Analysis of the index system for the SSWR

6.1.1. Stability
It is widely believed that the inundation situation, land use type, and

topography in the vicinity of the subway system can all affect its sta-
bility. In fact, subway stations at very low or low stability levels exhibit
certain common characteristics, that is, these stations are located in
close proximity to rivers, and have small water bodies area and green
space area within a 500-meter radius of each subway station, whereas
impermeable areas are large.

Extreme precipitation is the direct cause of waterlogging in subway

systems. Previous studies often use assessment indexes such as storm
intensity and annual average rainfall to analyze the impact of extreme
rainfall on the risk of subway waterlogging (Lyu et al., 2019b; Lyu et al.,
2020; Zheng et al., 2022). In these studies, the precipitation typically
holds a significant weight in the index system. In contrast, we used the
results simulated by the InfoWorks ICM model (inundation range, depth,
and duration) as direct driving factors for subway waterlogging. Inter-
estingly, these indexes have a relatively low weight. It is supposed that
the main reason is that the hydrological model, when simulating urban
waterlogging, comprehensively considers the interaction processes of
rainfall runoff, drainage pipe confluence, and surface water. Conse-
quently, its results are often closer to the actual surface waterlogging
situation than those considering precipitation alone. The inclusion of
drainage facilities, which mitigate waterlogging, could be the primary
reason for the lower weight of these indexes.

As illustrated in Fig. S4 (a) and (c), a high concentration of buildings
and roads in the central area of the CUAB was accompanied by a
comparatively limited extent of green space coverage. Most subway
stations located in this region exhibit lower levels of the stability, as
exemplified by Xuanwu Men Station and Xisi Station. This shed light on
the significant influence of land use types on waterlogging resilience
assessment, which tie well with the findings of previous research (Liu
et al., 2023; Yolina et al., 2023). Reasonable planning of green space in
urban area can enhance the stability. Recently, the utilization of green
space to bolster the stability has become increasingly prevalent, as green
land plays a crucial role in mitigating stormwater runoff by intercepting
rainfall and enhancing infiltration (Kuehler et al., 2017). Areas with
high waterlogging risk are mainly clustered in highly urbanized areas
(Zheng and Huang, 2023). This is primarily due to the expansion of
impermeable surfaces (Jin et al., 2024), such as built-up areas and roads,
which have a negative impact on enhancing the stability (Feng et al.,

Fig. 4. Station numbers of the stability, resistance, recovery, and SSWR in five levels on each subway line.
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2021). Permeable surfaces have been replaced with impervious mate-
rials, which has resulted in a reduction in the surface infiltration rate and
city’s drainage capacity (Du et al., 2015; Jr and Gibbons, 1996). This
alteration has disrupted the original water cycle process (Yang et al.,
2022), increasing the risk of water accumulation and backflow. Ulti-
mately, the resilience of subway system to waterlogging has potentially
been compromised. Analogously, this also explains that subway system
in many other mega-cities, such as Shanghai (Lyu et al., 2019), and
Zhengzhou (Zhao et al., 2022), are also more susceptible to water-
logging due to urbanization. In addition, water bodies exhibit a dual
impact on the stability. On the one hand, these water bodies act as
natural reservoirs with the capacity for floodwater storage (Wu et al.,
2020). On the other hand, the closer to a river, the greater the potential
risk of exposure for people to waterlogging events (Ceola et al., 2014;
Mård et al., 2018). For example, the stations at the lowest stability level,
namely Ping’anli Station, Hepingmen Station, and Changchun Jie Sta-
tion, are situated in areas where the water body surface percentage is
0 and are located too close to a river.

The topography (e.g., elevation and slope) at the entrance and exit of
the subway stations also affects the diffusion of surface water accumu-
lation. According to Fig. S4 (d) and (e), the elevation of the CUAB is
higher in the northwest and lower in the southeast, while the slope of the
central area is relatively steep, which corresponds to the spatial distri-
bution of the stability levels. In other words, subway stations at low
elevations and steep slopes are more prone to result in waterlogging
when extreme rainstorm occurs (Lyu et al., 2018).

6.1.2. Resistance
The improvement of underground infrastructure is of great impor-

tance to ensure the safety of people’s lives and property while disasters
(Huang et al., 2022). Most subway stations at high resistance level have
better subway infrastructure configurations. For example, the more the
number of exits a subway station has, the higher the speed and efficiency
of passenger evacuation, such as Xidan Station and Ping’anli Station.
Moreover, the open exit is the most vulnerable exit type to waterlogging.

Moreover, waterlogging exerts greater pressure on the resistance of
an interchange station than a regular station (Wang et al., 2021a). It can
be attributed to the higher volume of passengers at interchange stations,
which makes subway stations more prone to serious cascade disasters,
such as stampede deaths. And interchange stations often encompass
multiple transit lines, requiring more complex coordination to maintain
their normal operation. Drainage systems can effectively reduce the
negative effects of waterlogging (Singh et al., 2023; Sohn et al., 2020).
As shown in Fig. S7, the drainage pipelines in the central area exhibit a
dense distribution, resulting in relatively high level of the resistance.
When the rainfall intensity exceeds the capacity of the drainage system,
it will cause excessive depth of surface water accumulation to flow back
into the subway stations.

In the resistance dimension, this study innovatively selected and
quantified a series of indexes to characterize the unique characteristics
of the subway system, including morning and evening peak departure
time intervals, station length, and subway supporting facilities, which
are important factors affecting the resistance, that is, these indexes of the
resistance dimension played a dominant role in the SSWR. To alleviate

Fig. 5. Scatter plots of SSWR versus resilience level in three dimensions (stability, resistance, and recovery).
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the frequent occurrence of uneven passenger flow and high passenger
volume during peak hours of the subway, one potential solution is to
increase transportation capacity, which can be achieved by compressing
driving intervals. However, excessively small departure intervals cannot
cope with unexpected events and delays, as they are more likely to cause
train conflicts when speed limits or emergency braking are required,
resulting in reduced the resistance of the subway stations, such as
Jingsong Station and Tuanjiehu Station. Additionally, longer subway
station provides more space for passengers, which can serve as a buffer
during emergencies, reducing congestion and improving evacuation
efficiency, such as Ping’anli Station and Xin’gong Station. Subway
supporting facilities also play an important role in increasing system’s
resistance. The presence of AEDs and emergency calling devices en-
hances the system’s ability to respond to medical emergencies and other
incidents, thereby increasing the overall resilience. For example, Jiao-
hua Chang Station and Zhushikou Station have high resistance level, as
they are equipped with a large number of AEDs and emergency calling
devices. Although there are no relevant studies dealing with these in-
dexes, traditional indexes tend to focus on structural and engineering
aspects, such as drainage capacity and number of entrances and exits
(Jiao et al., 2023; Wang et al., 2021a). While important, they do not fully
reflect the dynamic operational characteristics and passenger manage-
ment aspects that the new indexes address. The innovation indexes
provide a more comprehensive view of resilience by incorporating
business flexibility and emergency preparedness, providing a compre-
hensive assessment of a system’s ability to withstand and from
disruptions.

6.1.3. Recovery
In response-recovery stage, the allocation of emergency resources

should be considered (Bera, 2023). Spatial planning of public resources
(fire station, ambulance, hospital) plays an important role in water-
logging recovery and disparities in resources lead to regional differences
in recovery. Subway stations at high recovery level have more resources
to respond to waterlogging, whereas some subway stations at low re-
covery level are found to be more vulnerable to waterlogging and take
longer to recover due to their spatial location and limited accessibility to
share the resources (Kodag et al., 2022). Consequently, the accessibility
of fire services and ambulance services is considered an important factor
in system resilience (Coles et al., 2017; Shi et al., 2022). Moreover, the
closer the incident spot is to the hospital, the better the recovery of the
system after the disaster (Zhao and Zhou, 2023). And professional
staffing of the subway, which is not often considered in resilience
assessment, can also plays a role in maintaining order of the scene and
mitigating risks to a certain extent. For example, subway stations with
advantages in terms of public resources, such as Dengshikou Station and
Suzhou Jie Station, exhibit strong performance in the response-recovery
stage.

In addition, the larger the population density and passenger flow
within the subway service area are, the higher the population pressure
and passenger demand carried by the subway, which leads to a lower
level of the recovery. Previous waterlogging events have demonstrated
that the children and the elderly are key factors to consider, as they are
more vulnerable to waterlogging compared with the general population
(Cao et al., 2023; Zhu et al., 2023). Similarly, the vulnerable facility is
considered to be a significant factor in assessing waterlogging resilience.
These demographic indexes are related not only to individual response
ability, but also to the ease of emergency rescue. For instance, Xizhimen
Station and Xinjiekou Station, which are located in densely populated
areas, exhibit lower recovery level.

6.2. Resilience improvement measures of subway system

The overall waterlogging risk pattern of the subway system is an
important reference for urban planning and emergency response plan-
ning, which has important practical significance for flood mitigation in

urban waterlogging control (Wang et al., 2021a). For subway stations
near high waterlogging risk spots (Fig. 2), such as Gulou Dajie Station, it
is necessary to prepare for waterlogging prevention. Meanwhile, the
relevant authorities should promptly convey risk information to citizens
to prevent causing casualties and property losses due to information lag.

Our research finds that a subway station at low stability level, such as
Qianmen Station, has the ability to maintain normal operation during
the disaster prevention stage is insufficient. Therefore, it is necessary to
strengthen the construction of green infrastructure, such as setting up
green space, small and medium-sized storage facilities, and improving
the ecological environment.

Improving the water blocking and drainage capacity is crucial for
subway stations at low resistance level. In terms of water blocking,
measures such as installing roofs over fully opened subway stations,
raising the height of exit steps, and incorporating intelligent water-
blocking boards can be implemented, such as that seen at Huangqu
Station. In terms of drainage, such as that at Guogongzhuang Station, the
surrounding gray infrastructure, including drainage pipelines, pumping
stations, and large-scale storage facilities, should be constructed and
improved.

Emergency rescue capabilities and demographic factors can also
affect the recovery of subway stations. For subway stations at low re-
covery level, such as Keyilu Station, it is necessary to strengthen pre-
disaster education and post-disaster construction. For example, emer-
gency drills for subway waterlogging can be conducted in collaboration
with various sectors of society, including the organization and command
of emergency teams, and the allocation of emergency supplies. In
addition, it is imperative to provide safety education to citizens, espe-
cially to vulnerable groups, to ensure their understanding of emergency
plans. Undoubtedly, this requires the joint efforts and cooperation of the
government, social organizations, and individuals.

6.3. Limitations

This study assesses the resilience of subway system to waterlogging
disaster and provides a new approach for the selection and calculation of
indexes for future resilience assessment. However, the study still has the
following limitations. Some indexes such as land subsidence, the critical
soil layer (stratum) below the subway, and social inequality, etc. are not
considered due to limitation of data acquisition. Furthermore, index
selection is inevitably a controversial process, as scholars hold varying
interpretations of the meanings and roles conveyed by diverse indexes.
Therefore, when advancing index innovation, it is imperative to prior-
itize both comprehensiveness and objectivity.

7. Conclusions

This study established a multi-dimensional index system based on
the “Stability-Resistance-Recovery” assessment framework by consid-
ering factors, such as natural environment, sociodemographic informa-
tion, and unique characteristics of subway station, to analyze the SSWR
under waterlogging disturbances. A case study in the CUAB showed that
the stability and resistance of subway system have greater impacts than
does recovery, indicating that the natural environment and character-
istics of subway system have strong impacts on the SSWR. The overall
SSWR in the CUAB is relatively low, especially for Line 2 and Line 10.
These lines are not only located in high waterlogging risk areas, but also
have a very low or low SSWR level at 89% and 56%, respectively, of the
subway stations along their routes. During the process of responding to
and recovering from waterlogging, the subway system performs better
in the response-recovery stage than in the disaster prevention and
diffusion stages. Therefore, it is necessary to strengthen disaster pre-
vention and control work, specifically in the improvement of the natural
environment and the construction and maintenance of infrastructure.
Evaluating the SSWR is crucial for guiding resilience practices. Our
research offers a widely applicable assessment framework and index
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system for analyzing the SSWR under waterlogging conditions, yielding
novel insights into the assessment of system resilience. These assessment
results can help decision-makers develop more scientifically grounded
strategies to enhance the subway system’s resilience, mitigate the
impact of waterlogging disasters, and further promote the sustainable
development of subway systems.

Commencing at the station level, this study analyzes the SSWR and
its driving factors, subsequently proposing an assessment framework
and improvement measures for waterlogging resilience. Future research
endeavors will extend beyond the station level to encompass the entire
subway network, assessing its resilience across various failure scenarios
and proposing strategies to bolster its overall resilience. Additionally,
while this study has provided a robust framework for SSWR assessment,
future research could benefit from advanced analysis methods such as
Artificial Intelligence (AI). AI techniques could enable more sophisti-
cated data analysis, pattern recognition, and predictive modeling,
thereby offering more effective strategies for improving the resilience of
subway systems against waterlogging disasters. This advancement could
contribute significantly to the sustainable development and emergency
preparedness of urban transit infrastructure.
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