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A B S T R A C T

Soil erosion in croplands poses a strong threat to food security and environmental sustainability. A compre-
hensive understanding of the driving forces and their contributions to changes in cropland soil erosion provides
solutions for effective mitigation strategies. The factors of embodied soil erosion changes have rarely been
systematically described on the regional scale. We combined the Modified Universal Soil Loss Equation (RUSLE)
with the multi-regional input-output (MRIO) model in the first step to analyze the flow of embodied cropland soil
erosion in the trade network. The structural decomposition analysis (SDA) model was used to decompose the
embodied cropland soil erosion into six driving factors: natural factor, human factor, and socio-economic ac-
tivities. The SDA results reflect that the nature factor (8.0 % and 6.0 % in two periods from 2012 to 2017) and the
final demand factor (17.3 % and 9.9 % in two periods from 2012 to 2017) facilitated the national cropland soil
erosion increasing. The human factor and the economic production structure factor always reduced the growth of
cropland soil erosion. This study contributes to understanding erosion drivers at provincial and national levels in
China, and guides the policy interventions for sustainable soil and water management.

1. Introduction

Soil is one of the most important natural resources, serving as a
crucial environmental element that provides humanity with food, re-
sources and ecosystem services. The topic of food security, which is
often assessed on the basis of whether food production is high enough to
meet human consumption, has received high attention as populations
grow and the need for high quality dietary conditions increases (Jiang
et al., 2024). However, the nutrient losses from topsoil and the decline in
soil fertility due to erosion have serious implications for food, water and
livelihood security, and have attracted worldwide attention (Sartori
et al., 2019).

Although cropland area occupies only 11% of the total global land
area, it contributes nearly 50% of the estimated soil erosion globally
(Borrelli et al., 2017). While threatening food security, soil erosion also
affects the achievement of SDG 2.4 (Sustainable Food Production and
Resilient Agricultural Practices) and SDG 15.3 (End Desertification and
Restore Degraded Land). “The State of the World’s Land and Water
Resources for Food and Agriculture – Systems at breaking point” (FAO,
2021) presented by the FAO points out that human pressures on land,

soil and freshwater systems are increasing, while the impact of climate
change is already outweighing the environmental consequences of de-
cades of unsustainable use. Land, soil and water management need to
find better synergies to change pre-existing irrational water and land use
patterns, the exacerbation of resource scarcity by irrational trans-
boundary trade activities, and the environmental impacts to keep the
systems functioning.

China, as one of the most populated countries, has always been under
great pressure in terms of food production. The main data of the 3rd
National Land Resource Survey shows that China’s cropland area is
127.58 million ha. China is one of the countries with the most serious
soil erosion in the world. Although China’s cropland area is huge, ac-
counting for half of the total land area, the per capita arable land area is
far below the world average. The extensive development and manage-
ment of arable land aimed at feeding a 1.4 billion population have led to
serious soil erosion and degradation (Du et al., 2024). Many studies have
calculated the soil erosion volume. Fu et al. (2010) analyzed the
coupling mechanisms between landscape pattern and soil and water
resources. The soil erosion model (Revised Universal Soil Loss Equation,
RUSLE) can effectively account for the soil loss depending on time and
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space, providing effective suggestions for soil and water conservation
work to achieve optimal utilization of soil and water resources.

The mastery of the dynamic law governing soil erosion and the
analysis of its underlying driving factors are essential tasks for achieving
comprehensive erosion control and formulating effective policies for soil
and water conservation. Most attribution analysis of soil erosion is dis-
cussed through correlation analysis and spatial analysis (Kun et al.,
2022; Mirchooli et al., 2023; Sahour et al., 2021; Wen et al., 2023).
These studies have primarily focused on exploring the main causes and
contributions of soil erosion from a production perspective, predomi-
nantly emphasizing natural factors while giving less consideration to the
role of social and economic factors. The soil erosion associated with
agricultural activities represent strong environmental impact resulting
from both human actions and the natural environment. Therefore, it is
essential to integrate both natural and human factors when considering
driving forces.

In the socio-economic-ecosystem, the resource flows are highly
intricate due to specifics in natural resource endowment and economic
development levels across regions. The rise of urbanization and the
northward shift of the grain production center in China (from "sending
grain from the South to the North" in to "sending grain from the North to
the South") (Sun et al., 2020) have increased in inter-regional trade,
resulting not only in the exchange of products and services but also
implicit transfers of resources and environmental impacts. Interregional
trade can either raise regional specialization for resource utilization
efficiency (Costello et al., 2011) or exacerbate regional resource scar-
city. Regions act as "producers" or "consumers" within the trade network.
For example, the economic level of the southeast coastal areas of China
is high, and the cultivated land is under great pressure from urban
expansion. At the same time, the higher population density is accom-
panied by higher food demand. Therefore, the agricultural provinces
with higher output export grain to the southeast coastal provinces.
However, large agricultural exports may come at a cost of internal water
and soil resources consumption and soil loss, leading to regional
development inequality that hinders harmonious development and so-
cial stability. The problem of spatial transfer of resource utilization
based on footprint flow is one of the current research hot topics.

Input-output analysis, as the typical top-down approach, can provide
a comprehensive description of the supply chain (Guo et al., 2025; Jin
et al., 2024; Zhong et al., 2021). Multiregional input-output modeling
integrates interregional trade linkages across regions and sectors, and is
an important tool for cross-regional resource and environmental studies.
Currently, some studies that combine RUSLE and top-down MRIO
models to calculate indirect soil erosion driven by final demand, using
data from each region as a satellite account. Fang et al. (2022) explored
water-land nexus while considering soil erosion in a trade network
constructed from MRIO tables in Heihe River Basin. Xie et al. (2024)
established a virtual land flow network for 13 cities in China with MRIO
table to understand urban land use metabolism. Wang et al. (2021)
quantified the contribution of soil erosion in various sectors and prov-
inces on the consumption side with the combination of the RUSLE and

MRIO models. Cui et al. (2022) estimated global cropland soil erosion
footprint and allocated it to broad range of crops. Therefore, our study
calculates embodied soil erosion by using the multi-regional
input–output model (MRIO) to reveal the total cropland soil erosion
hidden behind regional trade in the economic network according to
previous studies (Guo and Wang, 2023).

Decomposition analysis is an approach widely used to study the
causes of changes in economic indicators during a certain period. Its
fundamental concept is rooted in comparative static analysis, whereby
the alteration of an economic indicator is decomposed into several
factors to analyze their respective contributions. There are two preva-
lent decomposition methods: index decomposition method (IDA) and
structural decomposition method (SDA). Presently, SDA has gradually
emerged as an essential empirical tool for input-output technology both
at regional, national and continental levels, with its meticulous analyt-
ical process and comprehensive data collection practices (Bai et al.,
2024; Liu et al., 2022; Wang et al., 2017; Yu et al., 2019).

At present, SDA is mainly used in the research of driving factors of
carbon emission and water resource use change (Cai et al., 2019;
Franco-Solís and Montanía, 2021; Liang et al., 2021; Wang et al., 2024;
Wo et al., 2023; Yu et al., 2023). The use of SDA to quantify resources’
footprints and their drivers provides an important reference for allevi-
ating resource and ecological pressures (Bai et al., 2024). Changes in soil
erosion have rarely been systematically described. In addition, since
SDA is decomposed directly from the input-output table, most of the
analyses only consider the contribution of the changes in the technology
used by production processes and the contribution of the economic cycle
(final demand change) to explain the changes in greenhouse gas emis-
sions or resource consumption. However, soil erosion is caused by the
joint influence of human activities and natural environment. Traditional
decomposition methods can not accurately identify the main attributes
of soil erosion changes.

This paper first construct time-series (2012–2017) estimates of
China’s provincial soil erosion inventory based on the RUSLE model,
then uses the MRIO tables to analyze the flows and inter-annual changes
in the trade network. With these estimates, we can further investigate
the drivers behind the changes in soil erosion using the SDA. To the best
of our knowledge, this is the first study distinguishing contributions
between natural and human factors of these changes.

2. Materials and methods

2.1. Soil erosion model

The soil erosion on cropland was calculated by the model of Revised
Universal Soil Loss Equation (RUSLE) and the RUSLE ‘Soil loss refers to
the amount of sediment that reaches the end of a specified area on a hillslope
that is experiencing net loss of soil by water erosion’(Nearing et al., 2017).
The evaluation equation is described as following:

W=R× K× LS× C× P (1)

Table 1
Crop types and their corresponding base Ccrop values.

Crop Type Ccrop

Cereal grains Rice 0.15
Maize 0.38
Various 0.20

Root and tuber crops Tuber crops 0.34
Sugar crops 0.34

Fibre crops Cotton 0.40
Hemp 0.28

Tobacco  0.50
Leafy vegetables  0.25
Shrubs herbs  0.15
Green fodder  0.10
Oilseed group  0.25
Legumes  0.32
Other crops  0.15
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whereW is the yearly soil erosion rate of at each cell (t •ha− 1⋅ year− 1); R
is the rainfall erosivity factor on year basis (MJ • mm • ha− 1 • h− 1 •

year− 1); K is the soil erodibility factor (t • ha • h • ha− 1 •MJ− 1 •mm− 1).
LS is the slope length-steepness factor (dimensionless); C is the cover
management factor (dimensionless); and P is the erosion control (con-
servation support) practices factor (dimensionless).

Using Borrelli’s (2017) method for calculating the C factor of crop-
land (Ccrop values for various crop types are shown in Table 1).

The study used the main crop types and sown areas of arable land in
each province published by the National Bureau of Statistics (NBS) and
referred to the study of Li et al. (2020) to categorize the published crops
into 10 groups, and calculated the C factor of cropland in 2012, 2015,
and 2017 by using the following formula:

C=
∑10

n=1
Ccrop ×% RegionCrop (2)

where Ccrop is C factor of crop n, % RegionCrop is the proportion of the
sown area of crop n to the total cropland area of each province.

2.2. Environmentally extended MRIO analysis

The basic linear equation of the MRIO model is:

X=(I − A)− 1 × Y = LY (3)

where X denotes the total output matrix, I is the unit matrix; A is the
technical coefficient sub-matrix and arsij is given by arsij = zrsij / xsj (j = 1, 2,
…, n), in which zrsij is the intersectoral monetary flows from sector i in
region r to sector j in region s, and xsj is the total output of sector j in

region s; L = (I − A)− 1 is the Leontief inverse matrix which captures
both direct and indirect inputs to satisfy one unit of final demand in
monetary value; Y is the final demand matrix.

Embodied soil erosion refers to the total erosion produced
throughout the entire process. When calculated from the consumption
side, we discuss the erosion generated by the products and services
necessary to support economic development. To calculate the environ-
mental impact, the soil erosion intensity needs to be incorporated to
calculate the embodied soil erosion. Soil erosion intensity is direct soil
per unit of product or service, the total soil erosion can be expressed as
follows:

W= Ê × L× Y (4)

where W is the embodied soil erosion matrix; Ê is a diagonal matrix
where the diagonal elements are the soil erosion per unit output in each
sector (10− 4 tonnes •US$− 1).

2.3. Structural decomposition analysis

SDA has been widely used to estimate the drivers of changes in
greenhouse gas emissions and resources consumption based on the
MRIO table (Cai et al., 2019; Feng et al., 2015, 2017; Wei et al., 2017).
According to Eq. (W = Ê× L× Y) and Eq. (W = R× K× LS× C× P),
the total soil erosion associated with the final demand in MRIO can be
decomposed into six drivers (i.e., M (intensity of heterogeneity in the
spatial distribution of soil erosion), Q (area of cropland soil erosion
occupied per unit of agricultural economic output), N (nature factor), H

(human factor), L (economic production structure) and Y (final
demand)):

W= Ê × (I − A)− 1 × Y =

∑S

n=1
(R× K× LS) × (C× P)

Total output
× L× Y

=

∑S

n=1
(R× K× LS) × (C× P)

S
×

S
Total output

× L

× Y

=

∑S

n=1
(R× K× LS) × (C× P)

N*H*S
×

S
Total output

× N

× H× L× Y

= M× Q× N× H× L× Y
(5)

where S is the area of cropland soil erosion in each province; N is the
regional mean of the product of the R, LS, and K values for each prov-
ince, which stands for the nature factor; H is the regional mean of the
product of the C and P values for each province, which stands for the

human factor;M factor (M =

∑S
n=1

(R×K×LS)×(C×P)
N*H*S

) represents the intensity
of heterogeneity in the spatial distribution of soil erosion; Q factor (Q =

S
Total output) stands for the area of cropland soil erosion occupied per unit
of agricultural economic output.

Over the given period of 2012–2015 and 2015–2017, the changes in
cropland soil erosion embodied in trade can be decomposed as:

ΔW=ΔMQNHLY +MΔQNHLY +MQΔNHLY +MQNΔHLY

+MQNHΔLY +MQNHLΔY (6)

whereΔ represents the change in a factor. Each of the six terms in Eq. (6)
denotes the contributions to soil erosion changes, which are triggered by
one driving force if other variables are kept constant.

In the sixth terms in Eq. (6), Δ Y = Yt - Yt-1 is the change in the final
demand from the base year to the target year, where t is the target year
and t-1 is the base year. Put the variable of each item on the right and the
other constants on the left in the equation, and extract the constant in
each item. Eq. (6) can be written as:

ΔW= dMΔM+ dQΔQ+ dNΔN+ dHΔH+ dLΔL+ dYΔY (7)

where dM, dQ, dN, dH, dL, and dY are the coefficients for each Δ factor.
According to the order of six factors, Eq. (6) is one of 720 (6! = 720)
decomposition equations. Although each decomposition equation pro-
duced the same results for Δ W, De Haan (2001) found that the coeffi-
cient for each Δ factor depends on the used equations. The method of
Dietzenbacher and Los (1998) was used in this study which takes the
average of all the decompositions (Table S1).

To be expressed in such a form, the 720 equations need to be ar-
ranged in a standard order and the Δ factor is places in turn from “M” to
“Y”. For example, in the sixth terms in Eq. (7), the coefficient
Mt− 1Qt− 1Nt− 1Ht− 1Lt− 1 appears 120 times, and same as the coefficient
MtQtNtHtLt. Each term in the equation always has 2(6-1) = 32 different
coefficients attached to the Δ factor. The weight of the coefficient
Mt− 1Qt− 1Nt− 1Ht− 1Lt− 1 is 120 for it appeared 120 times (Feng et al.,
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2015). And each item in Eq. (7) can be present, for example, the
contribution of the population to the changes in the total cropland soil
erosion can be expressed as:

2.4. Data sources

MRIO tables were obtained from the Carbon Emission Accounts and
Datasets (CEADs, https://www.ceads.net). These tables consist of 31
provinces and 42 sectors. To describe the flows of cropland soil erosion,
the sectors of agriculture, forestry, animal husbandry, and fishery were
disaggregated into two new sectors, agriculture and forestry, animal
husbandry and fishery using the methodology of Lindner et al. (2013).
To eliminate the effects of price, Chinese Yuan was converted into US
dollars based on Purchasing Power Parity as published by the Organi-
zation for Economic Co-operation and Development (OECD, htt
ps://www.oecd.org/). The 2015 and 2017 MRIO tables were con-
verted to 2012 constant prices by the price index deflation method (Liu
and Peng (2010); Zhu et al. (2018)). The price indexes were obtained
from the China Statistical Yearbook (National Bureau of Statistics of
China, 2018).

The annual cropland dataset of China from 2012 to 2017 were

obtained from Tu et al. (2023). The R and P factor (Li et al., 2023) was
collected from the Science Data Bank (https://cstr.cn/31253.11.scienc
edb.07135) with spatial resolution of 1 km × 1 km. The annual K fac-
tor was collected from the study of Yue et al. (2022), which was
calculated based on the physical and chemical analysis data from the

Second national Soil Survey of China with spatial resolution of 30 m ×

30 m. The LS factor (Tang et al., 2019) was obtained from the National
Earth System Science Data Center with spatial resolution of 1 km× 1 km
(https://www.geodata.cn). All data were resampled to the same spatial
resolution of 1 km × 1 km. The areas of various types of crops and the
Gross Regional Product (GRP) data were obtained from NBS Database
(https://data.stats.gov.cn/).

3. Results

3.1. Soil erosion on croplands

The spatial distribution of soil erosion in croplands had a heteroge-
neity (Fig. 1(a–c)), which was similar in the three years. In 2012, 2015
and 2017, the estimated erosion summed to 1359 Mt, 1379 Mt, and
1445 Mt in China (except Hong Kong, Macau and Taiwan). The national
average soil erosion rate in 2012 was 8.2 t hm− 2 a− 1, 8.5 t hm− 2 a− 1 in

Fig. 1. Soil erosion rate in (a) 2012, (b) 2015, and (c) 2017, and (d) provincial soil erosion depending on years.

dYΔY=
1
720

(120Mt− 1Qt− 1Nt− 1Ht− 1Lt− 1ΔY+ 24MtQt− 1Nt− 1Ht− 1Lt− 1ΔY+ 24Mt− 1QtNt− 1Ht− 1Lt− 1ΔY+24Mt− 1Qt− 1NtHt− 1Lt− 1ΔY

+ 24Mt− 1Qt− 1Nt− 1HtLt− 1ΔY+ 24Mt− 1Qt− 1Nt− 1Ht− 1LtΔY+ 12MtQtNt− 1Ht− 1Lt− 1ΔY+ 12MtQt− 1NtHt− 1Lt− 1ΔY+…12Mt− 1QtNt− 1HtLtΔY
+ 12Mt− 1Qt− 1NtHtLtΔY+24MtQtNtHtLt− 1ΔY+24MtQtNtHt− 1LtΔY+ 24MtQtNt− 1HtLtΔY+ 24MtQt− 1NtHtLtΔY+24Mt− 1QtNtHtLtΔY
+ 120MtQtNtHtLtΔY)

(8)
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2015, and 8.8 t hm− 2 a− 1 in 2017. From a spatial point of view, soil
erosion is especially intensive on the Loess Plateau and the areas south of
the Qinling-Huaihe River line, especially in northeast, North and
southwest China. The four provinces with the highest soil erosion in-
tensity in the three years are Chongqing, Sichuan, Yunnan, and Guizhou
amounting in 2012 for 36 t hm− 2 a− 1, 29 t hm− 2 a− 1, 29 t hm− 2 a− 1, and
29 t hm− 2 a− 1, respectively. The provinces in northeast China, especially
Liaoning, also had a high rate of soil erosion. The areas with high erosion
rate are mainly distributed in the vicinity of the Lesser Khingan Moun-
tains, Changbai Mountains and the Greater Khingan Mountains. The
areas with high soil erosion rate in North China are mainly distributed in
the Shandong Peninsula and the mountainous and hilly areas of south-
central Shandong Province. In Southwest China, the areas with high
soil erosion rate are mainly distributed in karst areas. Both the national
average soil erosion rate and the amount of soil erosion increased year
by year, especially 2017, which increased by 66 Mt compared with 2015
(Fig. 1(d)). Heilongjiang, Jilin, Liaoning, as the main contributors to the

major soil erosion, showed a strong increase in soil erosion from 2015 to
2017, while the provinces in the southwest region showed a decrease,
such as Chongqing, Guangxi, and Sichuan.

3.2. Embodied cropland soil erosion characteristics

Fig. 2(a), Fig. S1(a), and Fig. S2(a) show the soil erosion flows be-
tween provinces in 2012, 2015, and 2017. The most provinces were
remarkably dependent on the products and services from their own re-
gion. The domestic demand erosion of these provinces was the main
component for both the direct and embodied cropland soil erosion.
Taking Sichuan, Yunnan, and Guizhou as an example, these provinces
were among the areas with the most serious erosion in croplands over
the three years. In 2012, the soil erosion caused by their own final de-
mand accounted for 62%, 71% and 84% of the all respectively, with
similar proportions in 2015 and 2017. These provinces need to take
responsibility for their soil erosion.

Fig. 2. (a) Cropland soil erosion transfer patterns in 2012, (b) Production-based and consumption-based soil erosion in 2012 (Mt) (Note: in Fig. 2(a), the outer circle
represents the total volume of imports and exports and the width of the flow between two provinces is determined by the soil erosion trade volume).

Fig. 3. Classification of provinces based on soil erosion growth rate and total soil erosion intensity in croplands in 2017 (I High intensity–High growth rate, II Low
intensity–High growth rate, III Low intensity–Low growth rate、IV High intensity–Low growth rate).
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According to the net soil erosion (Fig. 2 (b), Fig. S1(b), Fig. S2(b)),
namely the difference between production and consumption sides, there
were 19 net importers in 2012 and 2015. Shannxi changed from net soil
erosion exporter to net importer in 2017. The amounts of net imports
more than net exports provinces. Guizhou, Chongqing, Sichuan,
Yunnan, Heilongjiang, Jilin, and Liaoning, which are major soil erosion
provinces and also major net exporters. Among them, Yunnan and
Heilongjiang bore increased soil losses pressure from 2012 to 2017. It
can be seen that Yunnan and Heilongjiang’s net soil erosion exports have
increased by 133% (from 33Mt to 77Mt) and 67% (from 30Mt to 50Mt)
in 2017. This pressure may further increase in the future. The net im-
porters with the developed economy such as Guangdong, Shanghai,
Zhejiang, and Beijing have a very small amount of production-based soil
erosion. The total amount of soil eroded in these provinces in 2012,
2015, and 2017 was 31 Mt, 27 Mt, and 26 Mt, respectively, which
accounted for only 2.6%, 2.1%, and 2.0% of the total eroded amount in
the country. Most of this erosion was triggered by their own demand. As
can be seen from Fig. 2(a), Fig. S1(a), and Fig. S2(a), the consumption
soil erosion in these provinces mainly source from Heilongjiang, Jilin,
Liaoning, Yunnan, Guizhou, Sichuan, and Chongqing. Some provinces,
such as Tibet, Qinghai, Ningxia, Xinjiang and Hainan, have very little
soil erosion on both the production and consumption sides.

3.3. Classification of all provinces based on soil erosion intensity and
growth rate

To gain deeper insights into the primary contributors to soil erosion
and anticipate the future trends across various provinces, the combined
erosion intensity for the year 2017 and its growth rate spanning from

2012 to 2017 across all provinces are shown in Fig. 3. The intensity
serves as an indicator for erosion reduction potential, while the growth
rate offers insights for the persistence of erosion patterns. As a result,
provinces can be classified into four distinct groups based on China’s
average soil erosion intensity and growth rate (Table 2).

The five provinces in Group 1 have higher erosion intensity than the
national average, indicating a more severe requirement of erosion per
unit of agricultural output value, lower efficiency in land resource uti-
lization. There is a considerable increase from 2012 to 2017. These
provinces have a relatively close per capita GRP ranging from 10658 $ to
15399 $, which is lower than China’s per capita GDP of 16764 $ in 2017,
suggesting a low level of economic development.

The provinces in the Group 2 are characterized by low soil erosion
intensity primarily due to minimal erosion (Tibet, Qinghai, Xinjiang,
Ningxia, and Hainan) or owing to high land use efficiency (e.g., Hubei),
but the amount of soil erosion has increased greatly.

Like the Group 2, the intensity of soil erosion in Group 3 was also
low, with little or even decreasing fluctuations in erosion between 2012
and 2017. This Group has the largest number of provinces. The prov-
inces may have minimal soil erosion or high land use efficiency, and at
the same time their trade pattern change little from 2012 to 2017 or
become more environmentally friendly (the supply of products and
services in the agricultural sector decreased). In this Group, Shanghai,
Beijing, and Tianjin stand out with much higher per capita GRP
compared to the China’s per capita GDP. The provinces with better
economic development level in Group 2 and Group 3 and the provinces
with less economic development level in the Group 1 can show that soil
erosion and economic level are not synergistic.

The soil erosion changes of the four provinces in Group 4 are
decreased, but these provinces have a serious soil erosion per unit of
agricultural output, indicating a low efficiency in land resource
utilization.

3.4. Drivers of soil erosion in croplands

The reasons for the increase of soil erosion can be attributed to
natural and human factors, including increase of precipitation, change
of land use cover and the change of grain crop types and sown area.
From a trade perspective, there are impacts from both local and external
demands that increase pressure on agricultural production in the prov-
ince, along with changes in economic production structure. To further
clarify the segmentation reasons for soil erosion in both the production
and consumption ends at the national and provincial levels, this study
utilized SDA to decompose soil erosion.

Fig. 4. Contribution of driving factors to the changes for soil erosion in China from 2012 to 2017. M-intensity of heterogeneity in the spatial distribution of soil
erosion, Q-area of cropland soil erosion occupied per unit of agricultural economic output, N-nature factor, H-human factor, L-economic production structure, and
Y-final demand, columns with negative numbers in orange and positive numbers in green. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Table 2
Classification of provinces based on soil erosion growth rate and total soil
erosion intensity in croplands in 2017.

Low intensity (lower than 0.94 kg/
$)

High intensity (larger
than 0.94 kg/$)

High growth
rate (faster
than 9.8%)

Group 2 Group 1
Tibet, Qinghai, Xinjiang, Ningxia,
Hainan, Fujian, Hubei, Henan, and
Anhui

Gansu, Yunnan,
Heilongjiang, Shanxi,
and Sichuan

Low growth rate
(lower than
9.8%)

Group 3 Group 4
Inner Mongolia, Shaanxi,
Guangdong, Hunan, Hebei,
Guangxi, Shanghai, Jiangxi,
Jiangsu, Shandong, Zhejiang,
Beijing, and Tianjin

Jilin, Chongqing,
Guizhou, and Liaoning
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China’s soil erosion has increased by 1.6% from 2012 to 2015, and
increased by 4.7% in 2017 (Fig. 4). The six factors played the same role
in two time periods that only factor Y and factorN accelerated erosion in
China, the other four factors always contributed to the erosion decrease.
From 2012 to 2015, factor Y and factor N contributed to the erosion
increase by 17.3% and 8%, respectively. The Q factor greatly promoted
the reduction of soil erosion by 15.4%. The factor H, L, and M drove the
soil erosion decreased by 3.8%, 3.5%, and 1.0% in 2015, respectively. In
2017, the Y factor change, as the largest contributor, drove the soil
erosion increased by 9.9% compared with 2015. And factor N promoted

the soil erosion increased by 6.0%. The L (7.0%) and Q (3.3%) factors,
jointly drove the total soil erosion decreased by 10.3%.

Driving factors on the change of total soil erosion from 2012 to 2017
(Fig. 4) are consistent from the production side and the consumption
side, and there are differences only in provinces. At provincial level, the
M factor contributed to the reduction of production-based soil erosion
for most of the provinces from 2012 to 2015 (Fig. 5), especially in
Guangxi and Guangdong. This revealed that the planting structure in all
regions has changed over time. The effect of factor M to provinces was
very low, the highest was not more than 4.5 Mt (inhibition). It is worth

Fig. 5. Contribution of several driving factors to the changes for soil erosion in provinces from 2012 to 2015 (unit: Mt). (M-intensity of heterogeneity in the spatial
distribution of soil erosion, Q-area of cropland soil erosion occupied per unit of agricultural economic output, N-nature factor, H-human factor, L-economic pro-
duction structure, and Y-final demand, columns with negative numbers in orange and positive numbers in green.). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Contribution of several driving factors to the changes for soil erosion in provinces from 2015 to 2017 (unit: Mt).
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noting that Sichuan’s erosion increased by 17.3 Mt under the effect of
factor M. Q factor only contributed to a small increase in production-
based soil erosion of Beijing, Shanghai, Xinjiang and Tibet, and was
an inhibiting factor for other provinces. It is worth noting that this factor
greatly drove down the soil erosion of Guizhou, Sichuan, and Yunnan by
68%, 42%, and 24%, respectively. N factor was a highly influential
factor, and its effect regionally specific. The decrease of soil erosion in
several provinces such as Liaoning (58 Mt), Jilin (22 Mt), and Shandong
(18 Mt), were induced by 64%, 40%, and 57% under the change of N
factor. And the N factor greatly promoted the soil erosion increased by
23%, 45%, and 30% for Sichuan (69.5 Mt), Yunnan (63.6 Mt), and
Chongqing (34 Mt), respectively. Consistent with M factor, H factor
inhibited most of provinces’ soil erosion, and its effect ranges from
− 18.1 Mt to 0.5 Mt. The L factor promoted or inhibited provinces’ soil
erosion in a relatively balanced manner that half of provinces’ erosion
reduced under the L factor, and the other half increased. It greatly
promoted the soil erosion decreased by 29% in Chongqing (33 Mt), and
increased by 13% in Guizhou (17 Mt). Y factor was the largest
contributor to the increase of production-based soil erosion from 2012 to
2015, especially for Guizhou, Sichuan, Chongqing, and Yunnan, which
was responsible for the increase of 44%, 17%, 39%, and 21% of their
production-based soil erosions, respectively.

The M factor drove down the consumption-based erosion in most of
provinces from 2012 to 2015 to a small extent. Only Sichuan experi-
enced a large increase in soil loss under the influence of M factor (14
Mt). Soil loss was reduced in all provinces driven by Q factor, which
greatly drove down the erosion in Guizhou, Sichuan, and Yunnan for the
value of 41 Mt, 37 Mt, and 18 Mt, respectively. The N factor exhibited
promotion for more provinces in consumption side than production side.
Same as the production side, Sichuan, Yunnan, and Chongqing’s erosion
was greatly promoted, Liaoning, Shandong, and Jilin’s consumption-
based erosion was inhibited under the effect of N factor. The H factor
promotes an decrease in all provinces except for slightly increase in
Jilin. The L factor promoted (Guangdong, Henan, etc.) and inhibit
(Shandong, Chongqing, Yunnan, etc.) provinces’ consumption-based
soil erosion in a relatively balanced manner. The Y factor was still the
most important contributor to the increase of consumption-based
erosion, which was responsible for the increase of 73%, 17%, 47%
and 24% of the change for Chongqing, Sichuan, Guizhou, and Yunnan,
respectively.

From 2015 to 2017 (Fig. 6), the effect of M factor was weak from
both production-based and consumption-based erosion. From the
perspective of production side, the M factor promoted the growth of
erosion in 17 provinces, and the effect range was between − 4.6 Mt and
1.5 Mt. The Q factor was still an important contributor to inhibiting the
increase of erosion at the production and consumption sides in Sichuan
Province, which inhibits the increase of 12% and 12% respectively. In
addition, the growth of Jilin’s soil erosion at production and consump-
tion sides was also greatly driven down by Q factor. The production-
based erosion of Jilin increased by 73%, and the consumption side
increased by 43% from 2015 to 2017 under the effect of factor Q,
respectively. The N factor was the important contributor to the increase
of erosion from 2015 to 2017, and only Chongqing and Guangxi had a
greater decrease due to the influence of the N factor. At the production
side, affected by N factor, soil erosion increased sharply in Heilongjiang
(27 Mt), Jilin (26 Mt), Gansu (22 Mt), and Liaoning (18 Mt), increasing
by 47%, 77%, 97%, and 57%, respectively. From the consumption side,
the soil erosion in Liaoning and Jilin increased by 43% and 61%
respectively. Consistent with 2012–2015, H factor promoted the growth
of erosion in almost all provinces from both production and consump-
tion sides. From the perspective of production side, the effect range was
between − 2.7 Mt and 0.6 Mt. From the perspective of consumption side,
the effect range was between − 1.6 Mt and 0.4 Mt. The L factor was the
most important factor to reduce erosion from 2015 to 2017, which drove
the production side of Jilin, Sichuan, and Chongqing decreased by 65%,

5%, and 13%, respectively. The consumption-based erosion in
Chongqing, Shandong, and Sichuan was reduced by 20%, 27%, and 3%,
respectively, under the effect of the L factor. Yunnan and Heilongjiang’s
erosion increased sharply both at production (11% and 28%) and con-
sumption (7% and 15%) side under the influence of the L factor. The Y
factor still drove the increase of soil erosion in general in 2015–2017,
not as strong as in 2012–2015. From 2015 to 2017, the production side
increased by 17%, 22%, and 15% in Sichuan, Chongqing, and Guizhou,
respectively, and the consumption-based erosion increased by 17%,
26%, and 13% in Sichuan, Guizhou, and Chongqing, respectively. The
consumption-based erosion in Yunnan, Shanghai, and Jilin decreased by
24%, 87%, and 52%, respectively, driven by Y factor.

4. Discussion

The agricultural products produced from cropland not only guar-
antee the food security, but also serve as an important raw material for
industry production from the perspective of the whole industrial chain.
Soil erosion is highly likely to occur during agricultural production. The
total erosion value of 2012 (Fig. 1) was close to the result of Li et al.
(2022)’ s observation of 2010. The value of 2015 was consistent with the
finding of Wang et al. (2021)’ s. The spatial distribution of soil erosion in
China is consistent with the findings of other scholars (Li et al., 2020)
that the cropland soil erosion hotspots are concentrated in southwest,
northwest and northeast China. The unstable soil characteristics and the
transition between natural and semi-natural vegetation and cultivated
land, which may be one of the reasons for the considerable erosion in
provinces such as the northeastern provinces. The first reason for the
relatively large erosion in the southwestern region is that it is the main
distribution area of karst landform with high altitude and large slope,
and the second reason is the higher precipitation levels.

With the rapid development of industrialization and urbanization,
the center of grain production in China has shifted northward. The
interregional cropland soil erosion flow analysis showed that the
amount of net importer increased, and the major net exporter (including
most of the northern provinces, Yunnan, Guizhou, and Sichuan)
exported more erosion from 2012 to 2017. These provinces need to in-
crease the degree of agricultural mechanization and enhance the
specialization of agricultural production. In addition, rationally arran-
ging the planting structure according to their own climatic conditions
and resource endowment is necessary. In addition, it is necessary for
government departments to guide the layout of large-scale planting to
save resources. These measures can reduce erosion intensities, maximize
agricultural output, and improve the efficiency of cropland use while
minimizing erosion. Beijing, Shanghai, Jiangsu, Zhejiang and Guang-
dong provinces account for the highest proportion of tertiary industries
in China, indicating that their industrial structure is service-dominated.
These provinces import agricultural products and services from
economically undeveloped regions to meet their own demands, and
embodied cropland erosion transferred, too. Under the protection sys-
tem for permanent basic farmland, crops with comparative advantages
can be selected for planting. Urban agriculture and other types of agri-
culture with economic, social, ecological, educational and other inte-
grated functions can be vigorously developed to serve the diversified
needs of these developed regions.

The result of grouping provinces that the regions with high GRP are
concentrated in the Group 2 and Group 3 (the erosion intensity is lower
than the national level) confirms the conclusion of previous studies that
erosion is not beneficial to the growth of real gross domestic product
(GDP) (Sartori et al., 2019). In addition, another conclusion can be
inferred from Inner Mongolia that there is no strong relationship be-
tween the area of cropland and erosion amount. As the most important
pastoral region in China, Inner Mongolia is fast becoming an agricultural
province, ranking second in the country’s cropland, after Heilongjiang.
Inner Mongolia ranked among the top 10 in terms of grain production
from 2012 to 2017, much higher than Sichuan (NBS, https://www.stats.
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gov.cn/). However, the amount of soil erosion is much lower than that of
Sichuan, which was 8.9% of that of Sichuan Province in 2017. In the
third part of this study, Inner Mongolia was divided into the Group 3,
with lower erosion intensity and growth rate.

Overall, from the national driving factors’ perspective, it is necessary
to optimize the national agricultural production layout, especially the
planting structure in provinces with intensive cropland soil erosion,
while safeguarding grain production and ecological environment. At the
same time, environmentally beneficial provinces should be encouraged
to increase economic and technical support to net soil erosion exporters.
N factor is one of the decisive factors that dominate the change of
cropland soil erosion. Since erodibility factor and slope length-steepness
factor were assumed to be constant from 2012 to 2017 in this study, N
factor actually characterized the influence of rainfall. Spatially, the
national soil erosion in 2015 was gently increased by the N factor. Ac-
cording to China Climate Bulletin (China Meteorological Administra-
tion, 2016), the national average precipitation in 2015 was 650 mm, 3%
more than that of the usual year, but the spatial-temporal distribution of
precipitation was uneven, with more precipitation in South China.
Precipitation is less in North China. From the provincial driving factors’
perspective, the results showed that the N factor was the main driver for
the increase of erosion in most southern provinces (e.g., Sichuan,
Yunnan, Chongqing), while it contributed to the decrease in northern
provinces (e.g., Liaoning, Jilin, Shandong). Y factor is the most decisive
factor that dominate the growth of soil erosion in both periods, indi-
cating that the demand for soil erosion increased with the development
of economy. At present, many countries advocate residents to change
their eating habits, such as reducing foods with high virtual water
content, such as meat and dairy products, to improve water utilization.
Similarly, the government should encourage the internalization of soil
erosion as well as other environmental costs into the product prices. This
can not only reduce the environmental impact of the industrial sector,
which is highly dependent on agricultural products, but also guide more
families to change their consumption habits through the help of the
market to reduce soil erosion from the perspective of supply chain
(Wang et al., 2021). H factor drove the decrease of national soil erosion
in both time periods. Since the erosion control practices factor was
assumed to be constant from 2012 to 2017 in this study, H factor
actually characterized the influence of the planting structure. However,
the cropland area with soil erosion decreased from 2012 to 2015, and
increased from 2015 to 2017. It can be inferred that the planting
structure changed that from 2015 to 2017 the proportion of crops with
lower value of Ccrop increased. The L factor is an important driving factor
that can lead to a decrease in soil erosion. This result suggests the pro-
portion of agricultural products in the economic production structure
was decreasing, and the demand inputs for the soil erosion from up-
stream supply chain was reduced. The Q factor played a substantial role
in inhibiting the increase of soil loss. This indicates an enhancement in
the land use efficiency of agricultural production across the majority of
provinces, leading to a reduction in the area of cropland occupied per
unit of agricultural economic output.

This study still has some limitations. For example, in SDA analysis, it
is assumed that all factors are independent. However, in most empirical
cases, there is a mutual influence relationship between the factors
(Dietzenbacher and Los, 2000). Some studies applied other methods to
fill this gap, such as the Geo-detector tool (Jiang et al., 2018).
Furthermore, the RUSLE model used in this study can only evaluated the
erosion caused by the rainfall, while losses also comes from irrigation
(McDermid et al., 2023) and is disregarded in this study. Due to the
limitation of data acquisition in the input-output tables, the time series
of this study from 2012 to 2017, which cannot reflect the latest state of
soil erosion flow in the trade network. Nevertheless, the effects of human
activities can be better reflected in the long time series (Xie et al., 2019).
The following research would pay more attention to further discuss soil
erosion in forest and grassland combination with cropland to analyze the

transfer in trade networks over long time series.

5. Conclusions

China has a vast territory, and the agricultural planting structure of
provinces depends on natural conditions, human influence and trade
network, which leads to regionally specific contribution of driving fac-
tors to soil erosion. This study combined the grid layers of cropland soil
erosion with MRIO table to evaluate the erosion from both production
and consumption perspectives for 31 provinces of China. The change of
soil erosion (2012–2017) decomposed for 6 natural and human factors
to detect the driving forces by using the SDA method fills the gap where
biophysical processes and socioeconomic impacts cannot be coupled in
the previous studies. This study estimated that China’s total erosion was
about 1400 Mt from 2012 to 2017. The worst-hit areas of soil loss are
Sichuan, Yunnan, Guizhou, Chongqing, Liaoning, Heilongjiang, and
Jilin. Among them, Yunnan, Heilongjiang, and Sichuan are strongly in
danger due to the high increase of soil loss and erosion intensity. The
nature and the final demand factors are the dominant factors affecting
the soil erosion increase in the whole, but the composition reasons of the
erosion change exhibits distinguished features. For example, even
though Heilongjiang, Jilin and Liaoning are also located in northeast
China, the L factor greatly raised production-based erosion growth on
Heilongjiang and Liaoning. However, it drove down Jilin’s erosion.
Therefore, all provinces need to formulate soil and water conservation
policies according to their own positioning and needs.
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