基本信息
姓名:吴晓静 政治面貌:预备党员民 族:汉 毕业院校:荷兰特文特大学出生年月:1986.12 籍 贯: 山东省郓城县
专 业:地理信息科学 学 历:博士研究生
邮 箱:wuxiaojing86@126.com 电 话:15101293543
研究方向
地理时空分析,时空大数据挖掘,时空可视化,可视化分析,webGIS,人口移动模式分析
工作经历
2017.02 – 2018.02 博士后研究员
新加坡科技设计大学(Singapore University of Technology and Design)
参与项目:荷兰人口出行模式分析和可视化 主要参与人,负责:
开发用于双向聚类分析时空数据的交互式可视化分析网络平台
开发并维护用于可视化分析荷兰人口出行模式的交互式网络平台
教育经历
2010.09 – 2016.07 博士,地理信息科学方向
荷兰特文特大学(University of Twente),地理信息科学与地球观测学院(ITC)
博士导师: Prof. dr. Menno-Jan Kraak, Dr. Raul Zurita-Milla 博士论文: 基于聚类方法对地理时空序列的探索性分析(Clustering-based approaches to the exploration of geo-referenced time series)
主要研究:
使用自组织映射方法和可视化方法对荷兰气温数据分别进行空间和时间维度上的模式分析
引进双向聚类算法并结合可视化方法对荷兰气温数据同时进行空间和时间维度上的模式分析
开发了一种新的结合双向聚类算法,k 均值和可视化的分析方法,并利用该方法对欧洲格网物候大数据库进行分析
开发了一种新的三向聚类算法,并利用该算法和可视化方法对荷兰气温年内变化模式进行分析
2008-2010 理学硕士,地图学与地理信息系统
武汉大学,测绘遥感信息工程国家重点实验室
2004-2008 理学学士,地理信息系统
昆明理工大学,国土资源工程学院
教学经历
Spatial data modelling and processing (空间数据建模和处理) 硕士生课程 8 学时
Making maps (制图) 本科生课程 36 学时
语言及软件技能
外语 | 英语:精通,雅思 6.5 分 |
编程语言 | JavaScript, R, D3, Vue.js, MATLAB, Python, C# |
软件 获奖情况 | ArcGIS, QGIS, ILWIS, MySQL, MS Office, Endnote |
2017 | ISPRS2017 最佳青年口头报告奖(英文) 1/100 |
2013 | ITC 奖学金获得者, 荷兰特文特大学 |
2010 | 欧盟伊拉斯谟奖学金获得者(中国仅 10 个名额) |
2008 科研成果列表 | 武汉大学硕士一等奖学金 |
期刊文章
Wu, Xiaojing*, Zurita-Milla, R., Izquierdo-Verdiguier, E. and Kraak, M.-J. 2017. Tri-clustering geo-referenced time series: spatio-temporal analysis of intra-annual variability in Dutch temperature data. Annals of the Association of American
Geographers, 1-17. (SSCI,地理学旗舰期刊(8/79), Q1, IF: 2.799)
Wu, Xiaojing*, Zurita-Milla, R. and Kraak, M.-J. 2016. A novel analysis of spring phenological patterns over Europe based on co-clustering. Journal of Geophysical Research: Biogeosciences, 121(6), 1434-1448. (SCI, Q1, IF:3.395)
Wu, Xiaojing*, Zurita-Milla, R. and Kraak, M.-J. 2015. Co-clustering geo-referenced time series: exploring spatio-temporal patterns in Dutch temperature data. International Journal of Geographical Information Science, 29(4), 624-642. (SCI, 地理信息科学 top 期刊,Q1, IF:2.502)
Wu, Xiaojing*, Zurita-Milla, R. and Kraak, M.-J. 2013. Visual discovery of synchronization in weather data at multiple temporal resolutions. The Cartographic Journal, 50(3), 247-256. (SCI, Q2, IF:0.772)
Wu, Xiaojing*, Zurita-Milla, R., Kraak, M.-J., and Izquierdo-Verdiguier, E. 2017.
Clustering-based approaches to the exploration of spatio-temporal data, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7, 1387-1391, https://doi.org/10.5194/isprs-archives-XLII-2-W7-1387-2017, 2017. (EI)
Wu, Xiaojing*, Poorthuis, A., Zurita-Milla, R., and Kraak, M.-J. 2017. A web-based interactive platform for co-clustering spatio-temporal data, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7, 175-179,
https://doi.org/10.5194/isprs-archives-XLII-2-W7-175-2017, 2017. (EI)
Gao, Wenxiu, Stein, A., Yang, L., Hou, J., Wu, X., Jiang, X., 2016. Identification and
Utilization of Land-use Type Importance for Land-use Data Generalization. The Cartographic Journal, 53(1):31-42. (SCI)
Gao, Wenxiu, Gong, J., Yang, L., Jiang, X., Wu, X., 2012. Detecting Geometric Conflicts for Generalisation of Polygonal Maps. The Cartographic Journal, 49(1):21-29. (SCI)
博士论文
Wu, Xiaojing. 2016. Clustering-based approaches to the exploration of geo-referenced time series. PhD thesis. Link: https://www.itc.nl/library/papers_2016/phd/wu.pdf
报告
Wu, Xiaojing. Clustering-based approaches to the exploration of spatio-temporal data and web-based platforms: 特邀报告. In Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the National Administration of Surveying, Mapping and GeoInformation, Shenzhen University, 26-September 2017, Shenzhen, China.
Wu, Xiaojing, Poorthuis, A., Zurita-Milla, R. and Kraak, M.J. A web-based interactive platform for co-clustering spatio-temporal data: 口头报告. In: ISPRS Geospatial week 2017, WebMGS2017: The 5th International Workshop on Web Mapping, Geoprocessing and Services, 18-22 September 2017, Wuhan, China.
Wu, Xiaojing, Zurita-Milla, R., Izquierdo-Verdiguier, E. and Kraak, M.J.
Clustering-based approaches to the exploration of spatio-temporal data: 口头报告(最佳青年口头报告奖). In: ISPRS Geospatial week 2017, ICSDM2017: The 3rd International Conference on Spatial Data Mining and Geographical Knowledge Services, 18-22 September 2017, Wuhan, China.
Wu, Xiaojing, Zurita-Milla, R. and Kraak, M.J. Mapping the main spatio-temporal patterns of spring onset over Europe : 摘要. In: Phenology 2015 : third international conference on phenology, 5-8 October 2015, Kusadasi, Turkey : book of abstracts. p. 57
Zurita-Milla, R., Wu, Xiaojing and Kraak, M.J. (2015) Using co-clustering to analyze spatio - temporal patterns : a case study based on spring phenology: 摘要. In: Geocomputation 2015 : the art and science of solving complex spatial problems with computers, 21-23 May 2015 Dallas TX, United States. 5 p.
Wu, Xiaojing, Zurita-Milla, R. and Kraak, M.J. Visual discovery of synchronization in weather data at multiple temporal resolutions: 口头报告. In: ICA 2013: 26th International Cartographic Conference. Dresden, Germany, 26-30 august 2013. Oral presentation
Wu, Xiaojing, Zurita-Milla, R. and Kraak, M.J. Visual discovery of synchronization in weather data at multiple temporal granularities: 口头报告. In: GIScience 2012: Workshop WK02, Geovisual Analytics, Time to Focus on Time. Columbus, Ohio, USA, 18-21 September 2012.